Constructed electron-dense Mn sites in nitrogen-doped Mn3O4 for efficient catalytic ozonation of pyrazines: Degradation and odor elimination

催化作用 化学 降级(电信) 气味 环境化学 电子受体 氮气 光化学 有机化学 电信 计算机科学
作者
Yinning He,Jiayi Li,Jingyu Tang,Haijun Cheng,Tao Zeng,Zhiqiao He,Da Wang,Lizhang Wang,Shuang Song,Jun Ma
出处
期刊:Water Research [Elsevier]
卷期号:247: 120823-120823 被引量:18
标识
DOI:10.1016/j.watres.2023.120823
摘要

In this study, N-doped Mn3O4 catalysts (Mn-nN) with electron-dense Mn sites were synthesized and employed in heterogeneous catalytic ozonation (HCO). These catalysts demonstrated excellent performance in pyrazines degradation and odor elimination. The synthesis of Mn-nN was achieved through a facile urea-assisted heat treatment method. Experimental characterization and theoretical analyses revealed that the MnN structures in Mn-nN, played a crucial role in facilitating the formation of electron-dense Mn sites that served as the primary active sites for ozone activation. In particular, Mn-1N exhibited excellent performance in the HCO system, demonstrating the highest 2,5-dimethylpyrazine (2,5-DMP) degradation efficiency. •OH was confirmed as the primary reactive oxygen species involved in the HCO process. The second-order rate constants for 2,5-DMP degradation with O3 and •OH, were determined to be (3.75 ± 0.018) × 10-1 and (6.29 ± 0.844) × 109 M-1 s-1, respectively. Seventeen intermediates were identified through GC-MS analysis during the degradation of 2,5-DMP via HCO process with Mn-1N. The degradation pathways were subsequently proposed by considering these identified intermediates. This study introduces a novel approach to synthesize N-doped Mn3O4 catalysts and demonstrates their efficacy in HCO for the degradation of pyrazines and the elimination of associated odors. The results show that the catalysts are promising for addressing odor-related environmental issues and provide valuable insights about the broader significance of catalytic ozonation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HaroldYao发布了新的文献求助10
1秒前
TT发布了新的文献求助10
1秒前
axl发布了新的文献求助10
3秒前
3秒前
情怀应助cabbage008采纳,获得10
4秒前
摘希给摘希的求助进行了留言
4秒前
苗条的中蓝完成签到,获得积分10
4秒前
李健的小迷弟应助yr888采纳,获得10
5秒前
wenx完成签到,获得积分10
6秒前
7秒前
7秒前
Hello应助111采纳,获得10
11秒前
迅速的萧完成签到 ,获得积分10
12秒前
111发布了新的文献求助10
12秒前
烟花应助复杂的巧曼采纳,获得10
13秒前
领导范儿应助axl采纳,获得10
14秒前
慕青应助朴实凝雁采纳,获得10
18秒前
科研顺风完成签到,获得积分10
21秒前
21秒前
桐桐应助tangpanpan采纳,获得10
21秒前
浩然完成签到,获得积分10
22秒前
善学以致用应助科研顺风采纳,获得10
23秒前
NexusExplorer应助老金金采纳,获得10
25秒前
李健的小迷弟应助yongziwu采纳,获得10
26秒前
动听的梦秋完成签到,获得积分20
26秒前
菜菜发布了新的文献求助10
26秒前
jy关闭了jy文献求助
26秒前
华仔应助林伟采纳,获得10
29秒前
uu发布了新的文献求助10
30秒前
tian完成签到 ,获得积分10
32秒前
MNL关闭了MNL文献求助
33秒前
33秒前
脑洞疼应助windyxp采纳,获得10
33秒前
摘希发布了新的文献求助20
34秒前
小二郎应助111采纳,获得10
34秒前
Lychee完成签到,获得积分10
35秒前
36秒前
灵巧的翠风完成签到 ,获得积分10
36秒前
36秒前
lalala发布了新的文献求助10
37秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340351
求助须知:如何正确求助?哪些是违规求助? 2968384
关于积分的说明 8633457
捐赠科研通 2647933
什么是DOI,文献DOI怎么找? 1449886
科研通“疑难数据库(出版商)”最低求助积分说明 671575
邀请新用户注册赠送积分活动 660594