亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Large language modeling and classical AI methods for the future of healthcare

逻辑回归 随机森林 萧条(经济学) 决策树 统计 机器学习 回归 人工智能 人口 朴素贝叶斯分类器 医学 计量经济学 计算机科学 心理学 数学 环境卫生 经济 支持向量机 宏观经济学
作者
Srikanta Banerjee,Patrick Dunn,Scott Conard,Roger Ng
标识
DOI:10.1016/j.glmedi.2023.100026
摘要

Large Language Modeling (LLM) is ubiquitous in the healthcare industry guiding clinical decisions. With the increase in demand, we must proceed with caution in the AI industry. In this study, we evaluated the accuracy of the Random Forest model in comparison to other similar models. We assessed if there was a relationship between depression and hypertension and if depression predicted hypertension from 2005-2010 National Health and Nutrition Examination Survey. Depression was determined using the Patient Health Questionnaire (PHQ)-9 ≥ 10. Hypertension was determined by taking the average of three systolic pressure readings that were elevated. Current smoking was determined by self-reported data. We tested several Random Forest models, compared with logistic regression, naïve Bayes, decision tree model and assessed them for accuracy. The percentage of the population with diabetes was 7.7%. According to the logistic regression we found that employment (OR=0.87, p-value=0.07) and depression (OR=0.57. p-value=0.01). We also found that in comparison to logistic regression (87.8%), naïve Bayes (84.6%), and decision tree model (89.3%), the Random Forest (98.4%) was considered most accurate. We also found that out of all the variables, according to the Gini impurity index, employment (150) received the highest score in relative importance. The next highest score was depression (140). This system demonstrates the importance of using traditional AI systems such as Random Forest modeling in conjunction with LLM. ChatGPT and LLM's must be further understood to integrate with classical machine learning techniques to make further advances in healthcare. LLM's have been mobilized to write history and physical assessment, extracting drug names from medical notes, and condensing radiology reports. Abstraction of medical records and other applications in healthcare can further be enhanced by using the full potential for AI systems such LLM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Big完成签到,获得积分10
43秒前
Big发布了新的文献求助10
47秒前
十年HLX完成签到 ,获得积分10
52秒前
1分钟前
noss发布了新的文献求助10
1分钟前
Notch信号完成签到,获得积分10
2分钟前
2分钟前
liam发布了新的文献求助30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
戳的女孩关注了科研通微信公众号
3分钟前
滕皓轩完成签到 ,获得积分10
4分钟前
戳的女孩发布了新的文献求助30
4分钟前
Eve完成签到,获得积分20
4分钟前
xingsixs完成签到 ,获得积分10
4分钟前
科研通AI5应助点心采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
点心完成签到,获得积分10
6分钟前
6分钟前
科研通AI5应助点心采纳,获得10
6分钟前
科研通AI5应助liam采纳,获得30
6分钟前
ner关闭了ner文献求助
6分钟前
6分钟前
令和完成签到 ,获得积分10
6分钟前
Raunio完成签到,获得积分10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
7分钟前
7分钟前
ner发布了新的文献求助10
7分钟前
科研通AI5应助科研通管家采纳,获得10
7分钟前
汉堡包应助77采纳,获得10
7分钟前
科研通AI5应助ner采纳,获得10
7分钟前
7分钟前
77发布了新的文献求助10
7分钟前
木头完成签到,获得积分10
8分钟前
8分钟前
8分钟前
liam发布了新的文献求助30
9分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770451
求助须知:如何正确求助?哪些是违规求助? 3315478
关于积分的说明 10176440
捐赠科研通 3030489
什么是DOI,文献DOI怎么找? 1662916
邀请新用户注册赠送积分活动 795249
科研通“疑难数据库(出版商)”最低求助积分说明 756700