Hybrid deep learning model for wave height prediction in Australia's wave energy region

有效波高 波高 波浪模型 卷积神经网络 风浪 可再生能源 计算机科学 水准点(测量) 能量(信号处理) 气象学 人工智能 模拟 环境科学 算法 地质学 数学 工程类 大地测量学 统计 物理 电气工程 海洋学
作者
A. A. Masrur Ahmed,S. Janifer Jabin Jui,Mohanad S. AL‐Musaylh,Nawin Raj,Reepa Saha,Ravinesh C. Deo,Sanjoy Kumar Saha
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:150: 111003-111003 被引量:18
标识
DOI:10.1016/j.asoc.2023.111003
摘要

Waves are emerging as a renewable energy resource, but the harnessing of such energy remains among the least developed in terms of renewable energy technologies on a regional or a global basis. To generate usable energy, wave heights must be predicted in near-real-time, which is the driving force for wave energy converters. This study develops a hybrid Convolutional Neural Network-Long Short-Term Memory-Bidirectional Gated Recurrent Unit forecast system (CLSTM-BiGRU) trained to accurately predict significant wave height (Hsig) at multiple forecasting horizons (30 minutes, 0.5H; 2 hours, 02H; 3 hours, 03H and 6 hours, 06H. In this model, convolutional neural networks (CNNs), long-short-term memories (LSTMs), and bidirectional gated recurrent units (BiGRUs) are employed to predict Hsig. To construct the proposed CLSTM-BiGRU model, historical wave properties, including maximum wave height, zero-up crossing wave period, peak energy wave period, sea surface temperature, and significant wave heights are analysed. Several wave energy generation sites in Queensland, Australia were tested using the hybrid deep learning CLSTM-BiGRU model. Based on statistical score metrics, scatterplots, and error evaluations, the hybrid CLSTM-BiGRU model generates more accurate forecasts than the benchmark models. This study established the practical utility of the hybrid CLSTM-BiGRU model for modelling Hsig and therefore shows the model could have significant implications for wave and ocean energy generation systems, tidal or wave height monitoring as well as sustainable wave energy resource evaluation where a prediction of wave heights is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
pokexuejiao发布了新的文献求助10
2秒前
3秒前
Helen发布了新的文献求助10
5秒前
5秒前
初次完成签到 ,获得积分10
6秒前
6秒前
7秒前
852应助DanBao采纳,获得10
8秒前
8秒前
干净的秋柳完成签到,获得积分10
8秒前
tkdzjr12345发布了新的文献求助10
9秒前
9秒前
颌骨庙发布了新的文献求助10
10秒前
Jane完成签到 ,获得积分10
13秒前
13秒前
香蕉觅云应助思量博千金采纳,获得10
13秒前
SUN发布了新的文献求助10
14秒前
大力醉蓝完成签到,获得积分10
14秒前
酷波er应助谢峥嵘采纳,获得10
14秒前
hcq完成签到,获得积分20
15秒前
111111111111发布了新的文献求助10
17秒前
18秒前
18秒前
阿飘应助呆梨医生采纳,获得10
19秒前
20秒前
Eva发布了新的文献求助10
23秒前
pokexuejiao完成签到,获得积分10
23秒前
你在等什么完成签到,获得积分10
23秒前
标致果汁发布了新的文献求助30
23秒前
飞翔的企鹅应助Helen采纳,获得10
24秒前
25秒前
香蕉觅云应助你在等什么采纳,获得10
27秒前
wy完成签到,获得积分10
28秒前
谢峥嵘发布了新的文献求助10
31秒前
balabala发布了新的文献求助10
32秒前
ding应助科研通管家采纳,获得10
32秒前
顾矜应助科研通管家采纳,获得10
32秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349505
求助须知:如何正确求助?哪些是违规求助? 2975556
关于积分的说明 8669922
捐赠科研通 2656364
什么是DOI,文献DOI怎么找? 1454568
科研通“疑难数据库(出版商)”最低求助积分说明 673381
邀请新用户注册赠送积分活动 663847