Hybrid deep learning model for wave height prediction in Australia's wave energy region

有效波高 波高 波浪模型 卷积神经网络 风浪 可再生能源 计算机科学 水准点(测量) 能量(信号处理) 气象学 人工智能 模拟 环境科学 算法 地质学 数学 工程类 大地测量学 统计 物理 电气工程 海洋学
作者
A. A. Masrur Ahmed,S. Janifer Jabin Jui,Mohanad S. AL‐Musaylh,Nawin Raj,Reepa Saha,Ravinesh C. Deo,Sanjoy Kumar Saha
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:150: 111003-111003 被引量:18
标识
DOI:10.1016/j.asoc.2023.111003
摘要

Waves are emerging as a renewable energy resource, but the harnessing of such energy remains among the least developed in terms of renewable energy technologies on a regional or a global basis. To generate usable energy, wave heights must be predicted in near-real-time, which is the driving force for wave energy converters. This study develops a hybrid Convolutional Neural Network-Long Short-Term Memory-Bidirectional Gated Recurrent Unit forecast system (CLSTM-BiGRU) trained to accurately predict significant wave height (Hsig) at multiple forecasting horizons (30 minutes, 0.5H; 2 hours, 02H; 3 hours, 03H and 6 hours, 06H. In this model, convolutional neural networks (CNNs), long-short-term memories (LSTMs), and bidirectional gated recurrent units (BiGRUs) are employed to predict Hsig. To construct the proposed CLSTM-BiGRU model, historical wave properties, including maximum wave height, zero-up crossing wave period, peak energy wave period, sea surface temperature, and significant wave heights are analysed. Several wave energy generation sites in Queensland, Australia were tested using the hybrid deep learning CLSTM-BiGRU model. Based on statistical score metrics, scatterplots, and error evaluations, the hybrid CLSTM-BiGRU model generates more accurate forecasts than the benchmark models. This study established the practical utility of the hybrid CLSTM-BiGRU model for modelling Hsig and therefore shows the model could have significant implications for wave and ocean energy generation systems, tidal or wave height monitoring as well as sustainable wave energy resource evaluation where a prediction of wave heights is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助阿金采纳,获得10
1秒前
1秒前
杨松发布了新的文献求助50
1秒前
1秒前
叶惠美发布了新的文献求助10
1秒前
2秒前
正直的仙人掌应助竞鹤采纳,获得10
2秒前
大模型应助郎吟上邪采纳,获得10
3秒前
3秒前
善学以致用应助King采纳,获得10
3秒前
万能图书馆应助卷卷采纳,获得10
4秒前
华仔应助细腻代真采纳,获得10
5秒前
有点IS发布了新的文献求助10
5秒前
5秒前
共享精神应助Lmmm采纳,获得10
5秒前
6秒前
橘子发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
研友_VZG7GZ应助坚定晓兰采纳,获得10
8秒前
8秒前
Jasmine完成签到,获得积分10
8秒前
9秒前
CipherSage应助FMZ采纳,获得10
9秒前
10秒前
晏晏完成签到 ,获得积分10
10秒前
zzzz发布了新的文献求助10
10秒前
zhsy完成签到,获得积分10
10秒前
10秒前
尧九完成签到,获得积分10
11秒前
11秒前
11秒前
狄鹤轩完成签到,获得积分10
12秒前
无心的亦绿完成签到,获得积分10
12秒前
kiko完成签到,获得积分10
12秒前
13秒前
箜篌发布了新的文献求助10
13秒前
13秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907