Hybrid deep learning model for wave height prediction in Australia's wave energy region

有效波高 波高 波浪模型 卷积神经网络 风浪 可再生能源 计算机科学 水准点(测量) 能量(信号处理) 气象学 人工智能 模拟 环境科学 算法 地质学 数学 工程类 大地测量学 统计 物理 电气工程 海洋学
作者
A. A. Masrur Ahmed,S. Janifer Jabin Jui,Mohanad S. AL‐Musaylh,Nawin Raj,Reepa Saha,Ravinesh C. Deo,Sanjoy Kumar Saha
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:150: 111003-111003 被引量:18
标识
DOI:10.1016/j.asoc.2023.111003
摘要

Waves are emerging as a renewable energy resource, but the harnessing of such energy remains among the least developed in terms of renewable energy technologies on a regional or a global basis. To generate usable energy, wave heights must be predicted in near-real-time, which is the driving force for wave energy converters. This study develops a hybrid Convolutional Neural Network-Long Short-Term Memory-Bidirectional Gated Recurrent Unit forecast system (CLSTM-BiGRU) trained to accurately predict significant wave height (Hsig) at multiple forecasting horizons (30 minutes, 0.5H; 2 hours, 02H; 3 hours, 03H and 6 hours, 06H. In this model, convolutional neural networks (CNNs), long-short-term memories (LSTMs), and bidirectional gated recurrent units (BiGRUs) are employed to predict Hsig. To construct the proposed CLSTM-BiGRU model, historical wave properties, including maximum wave height, zero-up crossing wave period, peak energy wave period, sea surface temperature, and significant wave heights are analysed. Several wave energy generation sites in Queensland, Australia were tested using the hybrid deep learning CLSTM-BiGRU model. Based on statistical score metrics, scatterplots, and error evaluations, the hybrid CLSTM-BiGRU model generates more accurate forecasts than the benchmark models. This study established the practical utility of the hybrid CLSTM-BiGRU model for modelling Hsig and therefore shows the model could have significant implications for wave and ocean energy generation systems, tidal or wave height monitoring as well as sustainable wave energy resource evaluation where a prediction of wave heights is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
oyc完成签到,获得积分10
刚刚
刚刚
刚刚
Leexxxhaoo发布了新的文献求助10
1秒前
FFFFFFF完成签到,获得积分10
1秒前
1秒前
LIU发布了新的文献求助10
1秒前
小二郎应助医路有你采纳,获得10
1秒前
研友_VZG7GZ应助卡顿公开采纳,获得10
1秒前
可爱的函函应助一直采纳,获得20
1秒前
ufuon完成签到,获得积分10
2秒前
VDC应助MrFamous采纳,获得50
3秒前
娜行发布了新的文献求助10
3秒前
啦啦鱼完成签到 ,获得积分10
3秒前
3秒前
4秒前
习习发布了新的文献求助10
4秒前
4秒前
wanci应助drizzling采纳,获得10
4秒前
r93527005完成签到,获得积分10
4秒前
5秒前
霸气谷蕊完成签到 ,获得积分10
7秒前
羊羊羊完成签到,获得积分10
7秒前
7秒前
8秒前
科研通AI5应助WNL采纳,获得10
8秒前
Xuu完成签到,获得积分10
8秒前
外向的沅发布了新的文献求助10
8秒前
徐慕源发布了新的文献求助10
8秒前
夏哈哈完成签到 ,获得积分10
9秒前
默默海露完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
迷路安阳发布了新的文献求助10
11秒前
11秒前
NexusExplorer应助Jolene66采纳,获得10
11秒前
医路有你完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678