Region of interest focused MRI to synthetic CT translation using regression and segmentation multi-task network

翻译(生物学) 计算机科学 人工智能 分割 感兴趣区域 回归 合成数据 任务(项目管理) 模式识别(心理学) 数学 统计 生物 管理 经济 生物化学 信使核糖核酸 基因
作者
Sandeep Kaushik,Mikael Bylund,C. Cozzini,Dattesh Shanbhag,Steven Petit,J. Wyatt,Marion I. Menzel,Carolin M. Pirkl,Bhairav Mehta,Vikas Chauhan,Chandrasekharan Kesavadas,Joakim Jönsson,Tufve Nyholm,Florian Wiesinger,Bjoern Menze
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (19): 195003-195003 被引量:12
标识
DOI:10.1088/1361-6560/acefa3
摘要

Abstract Objective . In MR-only clinical workflow, replacing CT with MR image is of advantage for workflow efficiency and reduces radiation to the patient. An important step required to eliminate CT scan from the workflow is to generate the information provided by CT via an MR image. In this work, we aim to demonstrate a method to generate accurate synthetic CT (sCT) from an MR image to suit the radiation therapy (RT) treatment planning workflow. We show the feasibility of the method and make way for a broader clinical evaluation. Approach . We present a machine learning method for sCT generation from zero-echo-time (ZTE) MRI aimed at structural and quantitative accuracies of the image, with a particular focus on the accurate bone density value prediction. The misestimation of bone density in the radiation path could lead to unintended dose delivery to the target volume and results in suboptimal treatment outcome. We propose a loss function that favors a spatially sparse bone region in the image. We harness the ability of the multi-task network to produce correlated outputs as a framework to enable localization of region of interest (RoI) via segmentation, emphasize regression of values within RoI and still retain the overall accuracy via global regression. The network is optimized by a composite loss function that combines a dedicated loss from each task. Main results . We have included 54 brain patient images in this study and tested the sCT images against reference CT on a subset of 20 cases. A pilot dose evaluation was performed on 9 of the 20 test cases to demonstrate the viability of the generated sCT in RT planning. The average quantitative metrics produced by the proposed method over the test set were—(a) mean absolute error (MAE) of 70 ± 8.6 HU; (b) peak signal-to-noise ratio (PSNR) of 29.4 ± 2.8 dB; structural similarity metric (SSIM) of 0.95 ± 0.02; and (d) Dice coefficient of the body region of 0.984 ± 0. Significance . We demonstrate that the proposed method generates sCT images that resemble visual characteristics of a real CT image and has a quantitative accuracy that suits RT dose planning application. We compare the dose calculation from the proposed sCT and the real CT in a radiation therapy treatment planning setup and show that sCT based planning falls within 0.5% target dose error. The method presented here with an initial dose evaluation makes an encouraging precursor to a broader clinical evaluation of sCT based RT planning on different anatomical regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老老实实好好活着完成签到,获得积分10
2秒前
2秒前
nainai完成签到,获得积分20
2秒前
英姑应助妩媚的夏烟采纳,获得10
5秒前
han发布了新的文献求助10
5秒前
贾败发布了新的文献求助10
7秒前
桐桐应助黄垚采纳,获得10
8秒前
szcyxzh完成签到,获得积分10
9秒前
和谐的问丝完成签到,获得积分20
13秒前
18秒前
甪用完成签到,获得积分10
19秒前
19秒前
何时完成签到,获得积分10
20秒前
20秒前
龅牙苏完成签到,获得积分10
23秒前
黄垚发布了新的文献求助10
25秒前
26秒前
冰魂应助黄垚采纳,获得10
33秒前
JayL完成签到,获得积分10
38秒前
kiyo_v完成签到,获得积分10
43秒前
chinh完成签到,获得积分10
44秒前
zdnn完成签到,获得积分10
49秒前
2113完成签到,获得积分10
51秒前
zmnzmnzmn应助morena采纳,获得10
51秒前
52秒前
葫芦娃完成签到 ,获得积分10
57秒前
MMM发布了新的文献求助10
58秒前
谭杰发布了新的文献求助10
58秒前
meng完成签到,获得积分10
1分钟前
范同学完成签到,获得积分10
1分钟前
女神金完成签到,获得积分10
1分钟前
谭杰完成签到,获得积分10
1分钟前
希望天下0贩的0应助Mcling采纳,获得50
1分钟前
所所应助kalah采纳,获得10
1分钟前
1分钟前
北风给小小鱼的求助进行了留言
1分钟前
1分钟前
可以发布了新的文献求助10
1分钟前
1分钟前
脑洞疼应助pny采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775590
求助须知:如何正确求助?哪些是违规求助? 3321201
关于积分的说明 10203985
捐赠科研通 3036025
什么是DOI,文献DOI怎么找? 1665925
邀请新用户注册赠送积分活动 797196
科研通“疑难数据库(出版商)”最低求助积分说明 757766