已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Region of interest focused MRI to synthetic CT translation using regression and segmentation multi-task network

翻译(生物学) 计算机科学 人工智能 分割 感兴趣区域 回归 合成数据 任务(项目管理) 模式识别(心理学) 数学 统计 生物 管理 经济 生物化学 信使核糖核酸 基因
作者
Sandeep Kaushik,Mikael Bylund,C. Cozzini,Dattesh Shanbhag,Steven Petit,J. Wyatt,Marion I. Menzel,Carolin M. Pirkl,Bhairav Mehta,Vikas Chauhan,Chandrasekharan Kesavadas,Joakim Jönsson,Tufve Nyholm,Florian Wiesinger,Bjoern Menze
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (19): 195003-195003 被引量:9
标识
DOI:10.1088/1361-6560/acefa3
摘要

Abstract Objective . In MR-only clinical workflow, replacing CT with MR image is of advantage for workflow efficiency and reduces radiation to the patient. An important step required to eliminate CT scan from the workflow is to generate the information provided by CT via an MR image. In this work, we aim to demonstrate a method to generate accurate synthetic CT (sCT) from an MR image to suit the radiation therapy (RT) treatment planning workflow. We show the feasibility of the method and make way for a broader clinical evaluation. Approach . We present a machine learning method for sCT generation from zero-echo-time (ZTE) MRI aimed at structural and quantitative accuracies of the image, with a particular focus on the accurate bone density value prediction. The misestimation of bone density in the radiation path could lead to unintended dose delivery to the target volume and results in suboptimal treatment outcome. We propose a loss function that favors a spatially sparse bone region in the image. We harness the ability of the multi-task network to produce correlated outputs as a framework to enable localization of region of interest (RoI) via segmentation, emphasize regression of values within RoI and still retain the overall accuracy via global regression. The network is optimized by a composite loss function that combines a dedicated loss from each task. Main results . We have included 54 brain patient images in this study and tested the sCT images against reference CT on a subset of 20 cases. A pilot dose evaluation was performed on 9 of the 20 test cases to demonstrate the viability of the generated sCT in RT planning. The average quantitative metrics produced by the proposed method over the test set were—(a) mean absolute error (MAE) of 70 ± 8.6 HU; (b) peak signal-to-noise ratio (PSNR) of 29.4 ± 2.8 dB; structural similarity metric (SSIM) of 0.95 ± 0.02; and (d) Dice coefficient of the body region of 0.984 ± 0. Significance . We demonstrate that the proposed method generates sCT images that resemble visual characteristics of a real CT image and has a quantitative accuracy that suits RT dose planning application. We compare the dose calculation from the proposed sCT and the real CT in a radiation therapy treatment planning setup and show that sCT based planning falls within 0.5% target dose error. The method presented here with an initial dose evaluation makes an encouraging precursor to a broader clinical evaluation of sCT based RT planning on different anatomical regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助金角小王采纳,获得10
1秒前
上官若男应助金角小王采纳,获得30
2秒前
大模型应助金角小王采纳,获得10
2秒前
搜集达人应助金角小王采纳,获得30
2秒前
隐形曼青应助金角小王采纳,获得10
2秒前
香蕉觅云应助金角小王采纳,获得10
2秒前
4秒前
4秒前
忧伤的凝海完成签到,获得积分10
5秒前
6秒前
登登发布了新的文献求助10
7秒前
7秒前
山黛Liebe完成签到,获得积分10
7秒前
赘婿应助虚幻又莲采纳,获得10
8秒前
希望天下0贩的0应助lily88采纳,获得10
10秒前
10秒前
10秒前
11秒前
大龙哥886发布了新的文献求助10
11秒前
13秒前
14秒前
我想睡觉完成签到,获得积分10
17秒前
章鱼哥想毕业完成签到 ,获得积分10
19秒前
15966014069发布了新的文献求助10
20秒前
20秒前
寒冷书包完成签到,获得积分10
20秒前
20秒前
vxxfa完成签到 ,获得积分10
23秒前
陈ccc发布了新的文献求助10
24秒前
guard发布了新的文献求助30
25秒前
29秒前
舒伯特完成签到 ,获得积分10
29秒前
Akim应助Dr大壮采纳,获得10
29秒前
15966014069完成签到,获得积分20
30秒前
31秒前
31秒前
31秒前
31秒前
31秒前
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801512
关于积分的说明 7845255
捐赠科研通 2459095
什么是DOI,文献DOI怎么找? 1308964
科研通“疑难数据库(出版商)”最低求助积分说明 628618
版权声明 601727