Point-of-Care Noninvasive Prediction of Liver-Related Events in Patients With Nonalcoholic Fatty Liver Disease

医学 非酒精性脂肪肝 队列 队列研究 内科学 临床试验 疾病 脂肪肝
作者
Mónica Pons,Jesús Rivera‐Esteban,Mang Ma,Tracy Davyduke,Adèle Delamarre,Paul Hermabessière,Julie Dupuy,Grace Lai‐Hung Wong,Terry Cheuk‐Fung Yip,Grazia Pennisi,Adele Tulone,Calogero Cammà,Salvatore Petta,Victor de Lédinghen,Vincent Wai‐Sun Wong,Salvador Augustín,Juan M. Pericàs,Juan G. Abraldeṣ,Joan Genescà
出处
期刊:Clinical Gastroenterology and Hepatology [Elsevier]
卷期号:22 (8): 1637-1645.e9 被引量:25
标识
DOI:10.1016/j.cgh.2023.08.004
摘要

Individual risk prediction of liver-related events (LRE) is needed for clinical assessment of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) patients. We aimed to provide point-of-care validated liver stiffness measurement (LSM)-based risk prediction models for the development of LRE in patients with NAFLD, focusing on selecting patients for clinical trials at risk of clinical events.Two large multicenter cohorts were evaluated, 2638 NAFLD patients covering all LSM values as the derivation cohort and 679 more advanced patients as the validation cohort. We used Cox regression to develop and validate risk prediction models based on LSM alone, and the ANTICIPATE and ANTICIPATE-NASH models for clinically significant portal hypertension. The main outcome of the study was the rate of LRE in the first 3 years after initial assessment.The 3 predictive models had similar performance in the derivation cohort with a very high discriminative value (c-statistic, 0.87-0.91). In the validation cohort, the LSM-LRE alone model had a significant inferior discrimination (c-statistic, 0.75) compared with the other 2 models, whereas the ANTICIPATE-NASH-LRE model (0.81) was significantly better than the ANTICIPATE-LRE model (0.79). In addition, the ANTICIPATE-NASH-LRE model presented very good calibration in the validation cohort (integrated calibration index, 0.016), and was better than the ANTICIPATE-LRE model.The ANTICIPATE-LRE models, and especially the ANTICIPATE-NASH-LRE model, could be valuable validated clinical tools to individually assess the risk of LRE at 3 years in patients with NAFLD/NASH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
热爱科研的小康完成签到,获得积分10
2秒前
2秒前
NexusExplorer应助沙拉酱采纳,获得10
2秒前
3秒前
Aprial完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
汉堡包应助xiaomage采纳,获得10
8秒前
小伊001完成签到,获得积分10
9秒前
王图图发布了新的文献求助10
10秒前
10秒前
罗伊黄完成签到 ,获得积分10
10秒前
11秒前
小马甲应助傅老师采纳,获得10
12秒前
韩嘉琦完成签到,获得积分10
13秒前
岁月轮回发布了新的文献求助10
13秒前
义气丹雪应助热情蓝天采纳,获得50
14秒前
沙拉酱完成签到,获得积分10
14秒前
dyyisash完成签到 ,获得积分10
14秒前
lee完成签到,获得积分10
15秒前
韩嘉琦发布了新的文献求助10
15秒前
云飞扬完成签到,获得积分10
15秒前
16秒前
17秒前
简单沛山完成签到,获得积分10
17秒前
沙拉酱发布了新的文献求助10
18秒前
19秒前
19秒前
20秒前
方森岩完成签到,获得积分10
20秒前
20秒前
xiaomage发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
明理的熊猫关注了科研通微信公众号
22秒前
量子星尘发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712008
求助须知:如何正确求助?哪些是违规求助? 5207072
关于积分的说明 15265901
捐赠科研通 4864051
什么是DOI,文献DOI怎么找? 2611188
邀请新用户注册赠送积分活动 1561440
关于科研通互助平台的介绍 1518761