A hierarchical prognostic model for Co-diabetes pancreatic adenocarcinoma

列线图 医学 肿瘤科 内科学 腺癌 接收机工作特性 比例危险模型 胰腺癌 糖尿病 癌胚抗原 癌症 内分泌学
作者
Zelong Wu,Chunsheng Liu,Zuyi Ma,Zhenchong Li,Shujie Wang,Yubin Chen,Mingqian Han,Shanzhou� Huang,Qi Zhou,Chuanzhao Zhang,Baohua Hou
出处
期刊:Heliyon [Elsevier]
卷期号:9 (11): e21642-e21642
标识
DOI:10.1016/j.heliyon.2023.e21642
摘要

Co-diabetes pancreatic adenocarcinoma has a poorer prognosis than pancreatic adenocarcinoma without diabetes. This study aimed to develop a reliable prognostic model for patients with co-diabetes pancreatic adenocarcinoma.Overall, 169 patients with co-diabetes pancreatic adenocarcinoma were included in our study. First, the independent risk factors affecting the prognosis of patients with co-diabetes pancreatic adenocarcinoma were determined by univariate and multivariate Cox regression analyses. Based on these identified risk factors, we developed a nomogram and evaluated its predictive ability using the concordance index, receiver operating characteristic curve, calibration plot, decision curve, and net reclassification index.In this study, prealbumin, transferrin, carcinoembryonic antigen, distant metastasis, tumor differentiation neutrophil count, lymphocyte count and fasting blood glucose were confirmed as significant prognostic factors. Based on these predictors, a new nomogram was developed. Compared with the American Joint Committee on Cancer 8 staging system and other models, the nomogram achieved a higher concordance index in the training (0.795) and validation (0.729) queues. The area under the nomogram's curve for predicting patient survival at 0.5, 1, and 1.5 years in the training queue was >0.8. Patients were risk-stratified using the nomogram, and Kaplan-Meier survival curves of subgroups were plotted. The Kaplan-Meier curve also showed better separation than the American Joint Committee on Cancer 8 staging system, indicating that our model has a better risk hierarchical ability.Compared to the American Joint Committee on Cancer 8 staging system and other predictive models, our model showed better predictive ability for patients with co-diabetes pancreatic adenocarcinoma. Our model will help in patients' risk stratification and improves their prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺顺发布了新的文献求助20
刚刚
刚刚
黎黎完成签到,获得积分10
刚刚
刚刚
camellia发布了新的文献求助10
刚刚
1秒前
1秒前
筱玉完成签到,获得积分10
1秒前
李文博发布了新的文献求助10
1秒前
斯文静曼发布了新的文献求助10
1秒前
jiaolulu完成签到,获得积分10
1秒前
优秀的枫完成签到,获得积分20
1秒前
1秒前
美嘉美完成签到,获得积分10
1秒前
2秒前
炙热芝完成签到,获得积分10
3秒前
嘒彼小星完成签到 ,获得积分10
3秒前
3秒前
哭泣的翠丝完成签到,获得积分10
4秒前
4秒前
jennyyu完成签到,获得积分10
4秒前
terence完成签到,获得积分10
4秒前
5秒前
5秒前
HopeStar发布了新的文献求助10
5秒前
马保国123发布了新的文献求助10
5秒前
Hello应助蓝莓松饼采纳,获得10
6秒前
6秒前
优秀的枫发布了新的文献求助10
6秒前
6秒前
KDC完成签到,获得积分10
6秒前
MuMu完成签到,获得积分10
7秒前
7秒前
Yana1311完成签到,获得积分10
8秒前
lkc发布了新的文献求助10
8秒前
大气飞丹完成签到 ,获得积分10
8秒前
调研昵称发布了新的文献求助10
8秒前
yu完成签到 ,获得积分10
9秒前
Lvj发布了新的文献求助10
9秒前
英俊的铭应助lanjq兰坚强采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759