Scaling strategy for cell and gene therapy bioreactors based on turbulent parameters

生物反应器 湍流 叶轮 计算流体力学 剪应力 缩放比例 计算机科学 生物系统 数学 机械 生物 物理 几何学 植物
作者
Dmytro Iurashev,Peter A. Jones,Nadejda Andreev,Yana Wang,Tomoko Iwata‐Kajihara,Barbara Kraus,Juan A. Hernández Bort
出处
期刊:Biotechnology Journal [Wiley]
卷期号:19 (1) 被引量:3
标识
DOI:10.1002/biot.202300235
摘要

Abstract So far, power input has been used as the main parameter for bioreactor scale‐up/‐down in upstream process development and manufacturing. The rationale is that maintaining a consistent power input per unit volume should result in comparable mixing times at different scales. However, shear generated from turbulent flow may compromise the integrity of non‐robust cells such as those used during the production of cell and gene therapies, which may lead to low product quality and yield. Of particular interest is the Kolmogorov length parameter that characterizes the smallest turbulent eddies in a mixture. To understand its impact on scale‐up/‐down decisions, the distribution of Kolmogorov length along the trajectory flow of individual particles in bioreactors was estimated in silico with the help of computational fluid dynamics simulations. Specifically, in this study the scalability of iPSC‐derived lymphocyte production and the impact of shear stress across various differentiation stages were investigated. The study used bioreactors of volumes from 0.1 to 10 L, which correspond to the scales most used for parameter optimization. Our findings, which align with in vitro runs, help determine optimal agitation speed and shear stress adjustments for process transfer between scales and bioreactor types, using vertically‐oriented wheel and pitched‐blade impellers. In addition, empirical models specific to the bioreactors used in this study were developed. The provided computational analysis in combination with experimental data supports selection of appropriate bioreactors and operating conditions for various cell and gene therapy process steps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI完成签到 ,获得积分10
刚刚
1秒前
healer发布了新的文献求助10
1秒前
123完成签到,获得积分20
2秒前
李健的小迷弟应助yili采纳,获得10
2秒前
L.完成签到,获得积分10
2秒前
木子发布了新的文献求助10
2秒前
威武诺言发布了新的文献求助10
2秒前
科研通AI5应助孙二二采纳,获得10
2秒前
2秒前
英姑应助rookie_b0采纳,获得10
3秒前
毛慢慢发布了新的文献求助10
3秒前
123完成签到,获得积分10
3秒前
kangkang完成签到,获得积分10
4秒前
丘比特应助东风第一枝采纳,获得10
4秒前
4秒前
丰知然应助normankasimodo采纳,获得10
5秒前
黑森林发布了新的文献求助30
5秒前
hu970发布了新的文献求助10
5秒前
5秒前
俭朴夜雪发布了新的文献求助30
5秒前
林上草应助lzj001983采纳,获得10
5秒前
小白完成签到,获得积分20
5秒前
药疯了完成签到,获得积分20
6秒前
桐桐应助123采纳,获得10
6秒前
风中寄云发布了新的文献求助10
6秒前
buuyoo发布了新的文献求助10
6秒前
zjudxn发布了新的文献求助10
6秒前
春夏爱科研完成签到,获得积分10
7秒前
飞翔的西红柿完成签到,获得积分10
7秒前
xzy完成签到,获得积分10
7秒前
L.发布了新的文献求助20
8秒前
Verdigris完成签到,获得积分10
9秒前
cindy完成签到,获得积分10
9秒前
研友_VZG7GZ应助愉快彩虹采纳,获得10
9秒前
金色热浪完成签到 ,获得积分10
9秒前
快去读文献完成签到,获得积分20
9秒前
斯文静曼完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759