Scaling strategy for cell and gene therapy bioreactors based on turbulent parameters

生物反应器 湍流 叶轮 计算流体力学 剪应力 缩放比例 计算机科学 生物系统 数学 机械 生物 物理 植物 几何学
作者
Dmytro Iurashev,Peter A. Jones,Nadejda Andreev,Yana Wang,Tomoko Iwata‐Kajihara,Barbara Kraus,Juan A. Hernández Bort
出处
期刊:Biotechnology Journal [Wiley]
卷期号:19 (1) 被引量:3
标识
DOI:10.1002/biot.202300235
摘要

Abstract So far, power input has been used as the main parameter for bioreactor scale‐up/‐down in upstream process development and manufacturing. The rationale is that maintaining a consistent power input per unit volume should result in comparable mixing times at different scales. However, shear generated from turbulent flow may compromise the integrity of non‐robust cells such as those used during the production of cell and gene therapies, which may lead to low product quality and yield. Of particular interest is the Kolmogorov length parameter that characterizes the smallest turbulent eddies in a mixture. To understand its impact on scale‐up/‐down decisions, the distribution of Kolmogorov length along the trajectory flow of individual particles in bioreactors was estimated in silico with the help of computational fluid dynamics simulations. Specifically, in this study the scalability of iPSC‐derived lymphocyte production and the impact of shear stress across various differentiation stages were investigated. The study used bioreactors of volumes from 0.1 to 10 L, which correspond to the scales most used for parameter optimization. Our findings, which align with in vitro runs, help determine optimal agitation speed and shear stress adjustments for process transfer between scales and bioreactor types, using vertically‐oriented wheel and pitched‐blade impellers. In addition, empirical models specific to the bioreactors used in this study were developed. The provided computational analysis in combination with experimental data supports selection of appropriate bioreactors and operating conditions for various cell and gene therapy process steps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
外向的秋珊完成签到,获得积分10
刚刚
Shu发布了新的文献求助10
刚刚
刚刚
magneto发布了新的文献求助10
1秒前
1秒前
2秒前
张朝程发布了新的文献求助20
2秒前
科研通AI6应助似鱼采纳,获得20
2秒前
KalBlaze完成签到,获得积分10
2秒前
大模型应助123采纳,获得10
3秒前
tianya完成签到 ,获得积分10
3秒前
JamesPei应助悦耳念双采纳,获得10
3秒前
3秒前
4秒前
大个应助雷霆嘎巴采纳,获得30
4秒前
han完成签到,获得积分10
4秒前
kh453发布了新的文献求助10
4秒前
5秒前
桐桐应助褚驳采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
pcr163应助穆伟祺采纳,获得50
6秒前
汉堡包应助mao采纳,获得10
6秒前
6秒前
Hcx完成签到,获得积分20
7秒前
充电宝应助盐消采纳,获得10
7秒前
shc发布了新的文献求助10
7秒前
隐形曼青应助SH采纳,获得10
7秒前
科研通AI6应助美好凝莲采纳,获得10
7秒前
7秒前
好好好发布了新的文献求助10
7秒前
lll发布了新的文献求助10
8秒前
FashionBoy应助Luhh采纳,获得10
8秒前
8秒前
8秒前
8秒前
我是狗发布了新的文献求助10
8秒前
lynsan发布了新的文献求助10
8秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430157
求助须知:如何正确求助?哪些是违规求助? 4543397
关于积分的说明 14186899
捐赠科研通 4461523
什么是DOI,文献DOI怎么找? 2446207
邀请新用户注册赠送积分活动 1437454
关于科研通互助平台的介绍 1414381