重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Graph Reasoning Method Based on Affinity Identification and Representation Decoupling for Predicting lncRNA-Disease Associations

成对比较 计算机科学 图形 可分离空间 杠杆(统计) 推论 同种类的 可扩展性 特征学习 网络拓扑 代表(政治) 理论计算机科学 随机游动 卷积(计算机科学) 人工智能 解耦(概率) 节点(物理) 数据挖掘 机器学习 数学 人工神经网络 控制工程 政治 政治学 法学 工程类 数学分析 统计 结构工程 组合数学 数据库 操作系统
作者
Shuai Wang,Cui Hui,Tiangang Zhang,Peiliang Wu,Toshiya Nakaguchi,Ping Xuan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6947-6958 被引量:4
标识
DOI:10.1021/acs.jcim.3c01214
摘要

An increasing number of studies have shown that dysregulation of lncRNAs is related to the occurrence of various diseases. Most of the previous methods, however, are designed based on homogeneity assumption that the representation of a target lncRNA (or disease) node should be updated by aggregating the attributes of its neighbor nodes. However, the assumption ignores the affinity nodes that are far from the target node. We present a novel prediction method, GAIRD, to fully leverage the heterogeneous information in the network and the decoupled node features. The first major innovation is a random walk strategy based on width-first searching and depth-first searching. Different from previous methods that only focus on homogeneous information, our new strategy learns both the homogeneous information within local neighborhoods and the heterogeneous information within higher-order neighborhoods. The second innovation is a representation decoupling module to extract the purer attributes and the purer topologies. Third, a module based on group convolution and deep separable convolution is developed to promote the pairwise intrachannel and interchannel feature learning. The experimental results show that GAIRD outperforms comparing state-of-the-art methods, and the ablation studies prove the contributions of major innovations. We also performed case studies on 3 diseases to further demonstrate the effectiveness of the GAIRD model in applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
朱马大发布了新的文献求助10
刚刚
Stefani发布了新的文献求助10
刚刚
wy.he应助爱上下雨天采纳,获得10
1秒前
刘馨泽完成签到 ,获得积分20
1秒前
2秒前
无心的怜南完成签到,获得积分10
2秒前
xueshu666发布了新的文献求助10
2秒前
威武爆米花完成签到,获得积分10
3秒前
狐狸完成签到,获得积分20
3秒前
3秒前
jouholly发布了新的文献求助30
3秒前
风轩轩发布了新的文献求助10
4秒前
cm完成签到,获得积分10
4秒前
asder发布了新的文献求助10
4秒前
4秒前
王娟完成签到 ,获得积分10
5秒前
然而。发布了新的文献求助10
5秒前
5秒前
爱笑的桔子完成签到 ,获得积分10
5秒前
知天易易天难完成签到 ,获得积分10
6秒前
6秒前
认真以寒完成签到,获得积分20
6秒前
李兴起发布了新的文献求助10
6秒前
安静的赛君完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
高兴的羊完成签到,获得积分10
9秒前
AAA发布了新的文献求助20
9秒前
简默完成签到,获得积分10
9秒前
WendyWen发布了新的文献求助100
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
pancake发布了新的文献求助30
10秒前
10秒前
jackie给jackie的求助进行了留言
11秒前
复杂冰淇淋完成签到,获得积分20
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516