亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Reasoning Method Based on Affinity Identification and Representation Decoupling for Predicting lncRNA-Disease Associations

成对比较 计算机科学 图形 可分离空间 杠杆(统计) 推论 同种类的 可扩展性 特征学习 网络拓扑 代表(政治) 理论计算机科学 随机游动 卷积(计算机科学) 人工智能 解耦(概率) 节点(物理) 数据挖掘 机器学习 数学 人工神经网络 控制工程 政治 政治学 法学 工程类 数学分析 统计 结构工程 组合数学 数据库 操作系统
作者
Shuai Wang,Cui Hui,Tiangang Zhang,Peiliang Wu,Toshiya Nakaguchi,Ping Xuan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (21): 6947-6958 被引量:4
标识
DOI:10.1021/acs.jcim.3c01214
摘要

An increasing number of studies have shown that dysregulation of lncRNAs is related to the occurrence of various diseases. Most of the previous methods, however, are designed based on homogeneity assumption that the representation of a target lncRNA (or disease) node should be updated by aggregating the attributes of its neighbor nodes. However, the assumption ignores the affinity nodes that are far from the target node. We present a novel prediction method, GAIRD, to fully leverage the heterogeneous information in the network and the decoupled node features. The first major innovation is a random walk strategy based on width-first searching and depth-first searching. Different from previous methods that only focus on homogeneous information, our new strategy learns both the homogeneous information within local neighborhoods and the heterogeneous information within higher-order neighborhoods. The second innovation is a representation decoupling module to extract the purer attributes and the purer topologies. Third, a module based on group convolution and deep separable convolution is developed to promote the pairwise intrachannel and interchannel feature learning. The experimental results show that GAIRD outperforms comparing state-of-the-art methods, and the ablation studies prove the contributions of major innovations. We also performed case studies on 3 diseases to further demonstrate the effectiveness of the GAIRD model in applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
搜集达人应助秋来九月八采纳,获得10
6秒前
14秒前
20秒前
Chocolat_Chaud完成签到,获得积分10
21秒前
刘冬晴发布了新的文献求助10
31秒前
又绿发布了新的文献求助10
37秒前
zhang完成签到,获得积分10
51秒前
非洲大象完成签到,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
无限暖暖发布了新的文献求助10
1分钟前
1分钟前
hh完成签到,获得积分10
1分钟前
JIANHUAN完成签到 ,获得积分10
1分钟前
泥娃娃完成签到,获得积分10
2分钟前
蔚欢完成签到 ,获得积分10
2分钟前
CJH104完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
xm完成签到 ,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得20
3分钟前
3分钟前
3分钟前
TingtingGZ发布了新的文献求助10
3分钟前
zhjl完成签到,获得积分10
3分钟前
Li_KK完成签到,获得积分10
4分钟前
4分钟前
快叫豆哥发布了新的文献求助10
4分钟前
土壤情缘完成签到,获得积分10
4分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502902
求助须知:如何正确求助?哪些是违规求助? 4598594
关于积分的说明 14464661
捐赠科研通 4532215
什么是DOI,文献DOI怎么找? 2483863
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439745