亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computational immunogenomic approaches to predict response to cancer immunotherapies

免疫疗法 计算生物学 癌症免疫疗法 医学 基因组学 癌症 免疫检查点 间质细胞 精密医学 免疫系统 生物信息学 转录组 免疫学 生物 癌症研究 基因组 内科学 病理 基因 遗传学 基因表达
作者
Venkateswar Addala,Felicity Newell,John V. Pearson,Alec Redwood,B. W. Robinson,Jenette Creaney,Nicola Waddell
出处
期刊:Nature Reviews Clinical Oncology [Springer Nature]
卷期号:21 (1): 28-46 被引量:28
标识
DOI:10.1038/s41571-023-00830-6
摘要

Cancer immunogenomics is an emerging field that bridges genomics and immunology. The establishment of large-scale genomic collaborative efforts along with the development of new single-cell transcriptomic techniques and multi-omics approaches have enabled characterization of the mutational and transcriptional profiles of many cancer types and helped to identify clinically actionable alterations as well as predictive and prognostic biomarkers. Researchers have developed computational approaches and machine learning algorithms to accurately obtain clinically useful information from genomic and transcriptomic sequencing data from bulk tissue or single cells and explore tumours and their microenvironment. The rapid growth in sequencing and computational approaches has resulted in the unmet need to understand their true potential and limitations in enabling improvements in the management of patients with cancer who are receiving immunotherapies. In this Review, we describe the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells, as well as how best to select the most appropriate tool to address various clinical questions and, ultimately, improve patient outcomes. Identifying patients who are likely to benefit from immune-checkpoint inhibitors remains one of the major challenges in immunotherapy. Cancer immunogenomics is an emerging field that bridges genomics and immunology. The authors of this Review provide an overview of the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
司徒无剑完成签到,获得积分10
9秒前
15秒前
24秒前
宝字盖发布了新的文献求助10
29秒前
汉堡包应助宝字盖采纳,获得10
33秒前
wujuan完成签到 ,获得积分10
34秒前
39秒前
qwdqw发布了新的文献求助10
43秒前
qwdqw完成签到,获得积分10
51秒前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
爱静静应助苗条绝义采纳,获得30
3分钟前
3分钟前
3分钟前
童念之发布了新的文献求助10
3分钟前
老石完成签到 ,获得积分10
3分钟前
4分钟前
Georgechan完成签到,获得积分10
4分钟前
4分钟前
懦弱的寄琴完成签到 ,获得积分10
4分钟前
唉呀妈呀发布了新的文献求助100
4分钟前
爱静静应助苗条绝义采纳,获得30
4分钟前
5分钟前
yaoyaoyao完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
清脆如娆完成签到 ,获得积分10
6分钟前
6分钟前
宝字盖发布了新的文献求助10
6分钟前
7分钟前
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3562020
求助须知:如何正确求助?哪些是违规求助? 3135557
关于积分的说明 9412594
捐赠科研通 2835934
什么是DOI,文献DOI怎么找? 1558802
邀请新用户注册赠送积分活动 728467
科研通“疑难数据库(出版商)”最低求助积分说明 716878