Computational immunogenomic approaches to predict response to cancer immunotherapies

免疫疗法 计算生物学 癌症免疫疗法 医学 基因组学 癌症 免疫检查点 间质细胞 精密医学 免疫系统 生物信息学 转录组 免疫学 生物 癌症研究 基因组 内科学 病理 基因 遗传学 基因表达
作者
Venkateswar Addala,Felicity Newell,John V. Pearson,Alec Redwood,B. W. Robinson,Jenette Creaney,Nicola Waddell
出处
期刊:Nature Reviews Clinical Oncology [Springer Nature]
卷期号:21 (1): 28-46 被引量:28
标识
DOI:10.1038/s41571-023-00830-6
摘要

Cancer immunogenomics is an emerging field that bridges genomics and immunology. The establishment of large-scale genomic collaborative efforts along with the development of new single-cell transcriptomic techniques and multi-omics approaches have enabled characterization of the mutational and transcriptional profiles of many cancer types and helped to identify clinically actionable alterations as well as predictive and prognostic biomarkers. Researchers have developed computational approaches and machine learning algorithms to accurately obtain clinically useful information from genomic and transcriptomic sequencing data from bulk tissue or single cells and explore tumours and their microenvironment. The rapid growth in sequencing and computational approaches has resulted in the unmet need to understand their true potential and limitations in enabling improvements in the management of patients with cancer who are receiving immunotherapies. In this Review, we describe the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells, as well as how best to select the most appropriate tool to address various clinical questions and, ultimately, improve patient outcomes. Identifying patients who are likely to benefit from immune-checkpoint inhibitors remains one of the major challenges in immunotherapy. Cancer immunogenomics is an emerging field that bridges genomics and immunology. The authors of this Review provide an overview of the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CodeCraft应助TIGun采纳,获得10
2秒前
2秒前
3秒前
3秒前
asddragon发布了新的文献求助10
4秒前
4秒前
充电宝应助怕黑的海豚采纳,获得10
5秒前
xbb发布了新的文献求助10
7秒前
Jerry发布了新的文献求助10
8秒前
理理发布了新的文献求助30
9秒前
glimmer应助好久不见采纳,获得10
9秒前
小米粒发布了新的文献求助10
9秒前
10秒前
起风了完成签到 ,获得积分10
10秒前
科研通AI2S应助123采纳,获得10
12秒前
aldehyde应助提米橘采纳,获得50
13秒前
围城完成签到,获得积分10
13秒前
哈哈完成签到 ,获得积分10
13秒前
斯文败类应助xbb采纳,获得10
14秒前
logen完成签到,获得积分10
15秒前
动听曼荷发布了新的文献求助10
15秒前
大小可爱应助明钟达采纳,获得10
16秒前
啦啦啦完成签到 ,获得积分10
17秒前
搞怪人雄完成签到,获得积分10
18秒前
菠萝完成签到 ,获得积分10
18秒前
魔法师完成签到,获得积分10
18秒前
英姑应助英子采纳,获得10
19秒前
NexusExplorer应助wjl采纳,获得10
19秒前
Owen应助沙漠西瓜皮采纳,获得30
19秒前
20秒前
小蘑菇应助你是千堆雪采纳,获得10
20秒前
fan完成签到 ,获得积分10
21秒前
22秒前
哈哈哈完成签到,获得积分10
23秒前
爆米花应助乐观的青雪采纳,获得10
23秒前
23秒前
谦谦神棍完成签到,获得积分10
25秒前
gaochaofeng发布了新的文献求助10
25秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434089
求助须知:如何正确求助?哪些是违规求助? 3031323
关于积分的说明 8941651
捐赠科研通 2719262
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689427
邀请新用户注册赠送积分活动 685580