MSMCNet: Differential context drives accurate localization and edge smoothing of lesions for medical image segmentation

计算机科学 人工智能 分割 图像分割 计算机视觉 尺度空间分割 模式识别(心理学) 背景(考古学) 像素 特征(语言学) 基于分割的对象分类 古生物学 语言学 哲学 生物
作者
Ke Peng,Yulin Li,Qingling Xia,Tianqi Liu,Xinyi Shi,Diyou Chen,Li Li,Hui Zhao,Hanguang Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:167: 107624-107624 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107624
摘要

Medical image segmentation plays a crucial role in clinical assistance for diagnosis. The UNet-based network architecture has achieved tremendous success in the field of medical image segmentation. However, most methods commonly employ element-wise addition or channel merging to fuse features, resulting in smaller differentiation of feature information and excessive redundancy. Consequently, this leads to issues such as inaccurate lesion localization and blurred boundaries in segmentation. To alleviate these problems, the Multi-scale Subtraction and Multi-key Context Conversion Networks (MSMCNet) are proposed for medical image segmentation. Through the construction of differentiated contextual representations, MSMCNet emphasizes vital information and achieves precise medical image segmentation by accurately localizing lesions and enhancing boundary perception. Specifically, the construction of differentiated contextual representations is accomplished through the proposed Multi-scale Non-crossover Subtraction (MSNS) module and Multi-key Context Conversion Module (MCCM). The MSNS module utilizes the context of MCCM coding and redistribute the value of feature map pixels. Extensive experiments were conducted on widely used public datasets, including the ISIC-2018 dataset, COVID-19-CT-Seg dataset, Kvasir dataset, as well as a privately constructed traumatic brain injury dataset. The experimental results demonstrated that our proposed MSMCNet outperforms state-of-the-art medical image segmentation methods across different evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的方盒完成签到 ,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
传奇3应助饼干碎采纳,获得10
1秒前
2305814008发布了新的文献求助10
1秒前
Sandy完成签到 ,获得积分10
2秒前
传奇3应助彼黍离离采纳,获得30
2秒前
3秒前
111完成签到,获得积分10
4秒前
铃木发布了新的文献求助10
5秒前
科研通AI5应助无聊的小蕾采纳,获得10
5秒前
端庄向雁发布了新的文献求助10
7秒前
cc发布了新的文献求助10
8秒前
9秒前
天天快乐应助Balance Man采纳,获得10
9秒前
A_T_O_M_I_C发布了新的文献求助10
9秒前
隐形曼青应助ikun采纳,获得10
10秒前
浮游应助墨鱼大王采纳,获得10
11秒前
夙生缘起完成签到,获得积分20
11秒前
11秒前
13秒前
量子星尘发布了新的文献求助30
13秒前
搜集达人应助yixifu采纳,获得10
13秒前
李健应助fqf采纳,获得10
14秒前
柠檬发布了新的文献求助10
15秒前
15秒前
sunqian完成签到,获得积分10
15秒前
我是老大应助一小盆芦荟采纳,获得10
15秒前
16秒前
林黛玉完成签到 ,获得积分10
16秒前
16秒前
饼干碎发布了新的文献求助10
18秒前
Jerrylove发布了新的文献求助50
19秒前
forest完成签到,获得积分10
19秒前
温存发布了新的文献求助10
20秒前
小马甲应助哈哈哈嗝采纳,获得10
22秒前
22秒前
红茶猫完成签到,获得积分10
23秒前
完美世界应助玖爱采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941338
求助须知:如何正确求助?哪些是违规求助? 4207362
关于积分的说明 13077414
捐赠科研通 3986186
什么是DOI,文献DOI怎么找? 2182512
邀请新用户注册赠送积分活动 1198073
关于科研通互助平台的介绍 1110368