MSMCNet: Differential context drives accurate localization and edge smoothing of lesions for medical image segmentation

计算机科学 人工智能 分割 图像分割 计算机视觉 尺度空间分割 模式识别(心理学) 背景(考古学) 像素 特征(语言学) 基于分割的对象分类 语言学 生物 哲学 古生物学
作者
Ke Peng,Yulin Li,Qingling Xia,Tianqi Liu,Xinyi Shi,Diyou Chen,Li Li,Hui Zhao,Hanguang Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107624-107624 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107624
摘要

Medical image segmentation plays a crucial role in clinical assistance for diagnosis. The UNet-based network architecture has achieved tremendous success in the field of medical image segmentation. However, most methods commonly employ element-wise addition or channel merging to fuse features, resulting in smaller differentiation of feature information and excessive redundancy. Consequently, this leads to issues such as inaccurate lesion localization and blurred boundaries in segmentation. To alleviate these problems, the Multi-scale Subtraction and Multi-key Context Conversion Networks (MSMCNet) are proposed for medical image segmentation. Through the construction of differentiated contextual representations, MSMCNet emphasizes vital information and achieves precise medical image segmentation by accurately localizing lesions and enhancing boundary perception. Specifically, the construction of differentiated contextual representations is accomplished through the proposed Multi-scale Non-crossover Subtraction (MSNS) module and Multi-key Context Conversion Module (MCCM). The MSNS module utilizes the context of MCCM coding and redistribute the value of feature map pixels. Extensive experiments were conducted on widely used public datasets, including the ISIC-2018 dataset, COVID-19-CT-Seg dataset, Kvasir dataset, as well as a privately constructed traumatic brain injury dataset. The experimental results demonstrated that our proposed MSMCNet outperforms state-of-the-art medical image segmentation methods across different evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助林10采纳,获得10
刚刚
2秒前
3秒前
6666完成签到,获得积分10
3秒前
liuz53发布了新的文献求助10
4秒前
ding应助Arthur采纳,获得10
4秒前
Mujuas完成签到,获得积分10
4秒前
5秒前
Jin完成签到,获得积分10
5秒前
7秒前
7秒前
思源应助科研采纳,获得10
8秒前
Keria发布了新的文献求助10
9秒前
s654231完成签到,获得积分10
9秒前
dyk完成签到,获得积分10
9秒前
痴情的雨真完成签到,获得积分10
9秒前
无名完成签到,获得积分10
9秒前
10秒前
充电宝应助柔弱的海之采纳,获得10
11秒前
12秒前
谦让马里奥完成签到,获得积分10
12秒前
15秒前
大个应助英勇海采纳,获得20
15秒前
英姑应助liuz53采纳,获得10
16秒前
所所应助叁壹粑粑采纳,获得10
16秒前
shiqian完成签到,获得积分10
16秒前
1104481279完成签到,获得积分10
18秒前
Billy发布了新的文献求助10
18秒前
扎心发布了新的文献求助10
19秒前
20秒前
在路上完成签到 ,获得积分0
20秒前
义气谷兰完成签到 ,获得积分10
20秒前
KingYH完成签到,获得积分10
21秒前
mao发布了新的文献求助10
25秒前
阿达发布了新的文献求助10
25秒前
27秒前
27秒前
orixero应助今天做实验了吗采纳,获得10
29秒前
镇痛蚊子发布了新的文献求助10
30秒前
隐形曼青应助mao采纳,获得10
31秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
The Paleoanthropology of Eastern Asia 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3174316
求助须知:如何正确求助?哪些是违规求助? 2825549
关于积分的说明 7953081
捐赠科研通 2486512
什么是DOI,文献DOI怎么找? 1325288
科研通“疑难数据库(出版商)”最低求助积分说明 634409
版权声明 602734