MSMCNet: Differential context drives accurate localization and edge smoothing of lesions for medical image segmentation

计算机科学 人工智能 分割 图像分割 计算机视觉 尺度空间分割 模式识别(心理学) 背景(考古学) 像素 特征(语言学) 基于分割的对象分类 古生物学 语言学 哲学 生物
作者
Ke Peng,Yulin Li,Qingling Xia,Tianqi Liu,Xinyi Shi,Diyou Chen,Li Li,Hui Zhao,Hanguang Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107624-107624 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107624
摘要

Medical image segmentation plays a crucial role in clinical assistance for diagnosis. The UNet-based network architecture has achieved tremendous success in the field of medical image segmentation. However, most methods commonly employ element-wise addition or channel merging to fuse features, resulting in smaller differentiation of feature information and excessive redundancy. Consequently, this leads to issues such as inaccurate lesion localization and blurred boundaries in segmentation. To alleviate these problems, the Multi-scale Subtraction and Multi-key Context Conversion Networks (MSMCNet) are proposed for medical image segmentation. Through the construction of differentiated contextual representations, MSMCNet emphasizes vital information and achieves precise medical image segmentation by accurately localizing lesions and enhancing boundary perception. Specifically, the construction of differentiated contextual representations is accomplished through the proposed Multi-scale Non-crossover Subtraction (MSNS) module and Multi-key Context Conversion Module (MCCM). The MSNS module utilizes the context of MCCM coding and redistribute the value of feature map pixels. Extensive experiments were conducted on widely used public datasets, including the ISIC-2018 dataset, COVID-19-CT-Seg dataset, Kvasir dataset, as well as a privately constructed traumatic brain injury dataset. The experimental results demonstrated that our proposed MSMCNet outperforms state-of-the-art medical image segmentation methods across different evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tingting发布了新的文献求助10
1秒前
大个应助cc采纳,获得10
2秒前
Mingzhu发布了新的文献求助10
2秒前
李爱国应助欣喜的忆秋采纳,获得10
3秒前
猪猪hero发布了新的文献求助10
3秒前
奥奥没有利饼干完成签到 ,获得积分10
4秒前
愿好完成签到,获得积分10
8秒前
若n完成签到 ,获得积分10
10秒前
小二郎应助123采纳,获得10
10秒前
wxyshare应助一口啵啵采纳,获得10
11秒前
星辰大海应助一口啵啵采纳,获得10
11秒前
搭碰完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
糊涂涂完成签到 ,获得积分10
14秒前
今后应助小半采纳,获得10
14秒前
FashionBoy应助错觉采纳,获得10
15秒前
15秒前
炸骐发布了新的文献求助10
15秒前
怕黑向秋发布了新的文献求助10
15秒前
15秒前
cc完成签到,获得积分20
17秒前
17秒前
17秒前
杜妤涵完成签到,获得积分10
18秒前
挺喜欢你发布了新的文献求助10
18秒前
19秒前
Breeze完成签到 ,获得积分10
19秒前
天道酬勤完成签到,获得积分10
20秒前
cjt发布了新的文献求助10
20秒前
柴子完成签到,获得积分10
21秒前
雨安完成签到,获得积分10
21秒前
21秒前
哪有人不疯的完成签到 ,获得积分10
21秒前
完美世界应助Pendulium采纳,获得10
22秒前
cc发布了新的文献求助10
22秒前
充电宝应助苹果采纳,获得10
23秒前
23秒前
怕黑向秋完成签到,获得积分10
23秒前
羊羊完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490042
求助须知:如何正确求助?哪些是违规求助? 4588835
关于积分的说明 14421391
捐赠科研通 4520586
什么是DOI,文献DOI怎么找? 2476785
邀请新用户注册赠送积分活动 1462268
关于科研通互助平台的介绍 1435171