亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MSMCNet: Differential context drives accurate localization and edge smoothing of lesions for medical image segmentation

计算机科学 人工智能 分割 图像分割 计算机视觉 尺度空间分割 模式识别(心理学) 背景(考古学) 像素 特征(语言学) 基于分割的对象分类 古生物学 语言学 哲学 生物
作者
Ke Peng,Yulin Li,Qingling Xia,Tianqi Liu,Xinyi Shi,Diyou Chen,Li Li,Hui Zhao,Hanguang Xiao
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:167: 107624-107624 被引量:1
标识
DOI:10.1016/j.compbiomed.2023.107624
摘要

Medical image segmentation plays a crucial role in clinical assistance for diagnosis. The UNet-based network architecture has achieved tremendous success in the field of medical image segmentation. However, most methods commonly employ element-wise addition or channel merging to fuse features, resulting in smaller differentiation of feature information and excessive redundancy. Consequently, this leads to issues such as inaccurate lesion localization and blurred boundaries in segmentation. To alleviate these problems, the Multi-scale Subtraction and Multi-key Context Conversion Networks (MSMCNet) are proposed for medical image segmentation. Through the construction of differentiated contextual representations, MSMCNet emphasizes vital information and achieves precise medical image segmentation by accurately localizing lesions and enhancing boundary perception. Specifically, the construction of differentiated contextual representations is accomplished through the proposed Multi-scale Non-crossover Subtraction (MSNS) module and Multi-key Context Conversion Module (MCCM). The MSNS module utilizes the context of MCCM coding and redistribute the value of feature map pixels. Extensive experiments were conducted on widely used public datasets, including the ISIC-2018 dataset, COVID-19-CT-Seg dataset, Kvasir dataset, as well as a privately constructed traumatic brain injury dataset. The experimental results demonstrated that our proposed MSMCNet outperforms state-of-the-art medical image segmentation methods across different evaluation metrics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
alaa发布了新的文献求助10
4秒前
5秒前
可爱的函函应助小马采纳,获得10
6秒前
面影如春完成签到,获得积分10
6秒前
慕青应助田子廉采纳,获得10
9秒前
bbhk完成签到,获得积分10
12秒前
14秒前
17秒前
小马发布了新的文献求助10
24秒前
alaa完成签到,获得积分20
28秒前
hll发布了新的文献求助10
30秒前
32秒前
34秒前
付津顺发布了新的文献求助10
38秒前
Hello应助guyutang采纳,获得10
41秒前
Twistti完成签到,获得积分10
42秒前
谐音梗别扣钱完成签到 ,获得积分10
43秒前
Zoe完成签到 ,获得积分10
48秒前
49秒前
大个应助小马采纳,获得10
49秒前
付津顺完成签到,获得积分10
50秒前
大帅哥完成签到 ,获得积分10
51秒前
zhongbo发布了新的文献求助10
53秒前
53秒前
55秒前
小马发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助hll采纳,获得10
1分钟前
芝士奶盖有点咸完成签到 ,获得积分10
1分钟前
1分钟前
田子廉发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Ava应助田子廉采纳,获得10
1分钟前
科研通AI6应助ccccc采纳,获得10
1分钟前
1分钟前
minhdh完成签到,获得积分10
1分钟前
ljy完成签到,获得积分10
1分钟前
guyutang发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564848
求助须知:如何正确求助?哪些是违规求助? 4649537
关于积分的说明 14689066
捐赠科研通 4591517
什么是DOI,文献DOI怎么找? 2519183
邀请新用户注册赠送积分活动 1491843
关于科研通互助平台的介绍 1462872