Modeling of water film generation in up-inclined low liquid loading natural gas pipeline elbows and its implication on internal corrosion occurrence

腐蚀 管道(软件) 材料科学 天然气 自然(考古学) 石油工程 复合材料 环境科学 冶金 地质学 机械工程 工程类 废物管理 古生物学
作者
Fuhe Lin,Y. Frank Cheng,Zhangxin Chen
标识
DOI:10.1016/j.geoen.2023.212341
摘要

Condensed water often accompanies natural gas in the transmission process. The water forms thin film when parameters such as temperature and pressure change. This accelerates pipeline corrosion and thins the pipeline wall. Severe corrosion can lead to pipeline rupture, endangering the pipeline safety and leading to economic losses. The distribution of a water film plays a significant role in the corrosion process, So the work of predicting the distribution of a water film and flow characteristics becomes a key priority when analyzing corrosion in a pipe elbow. In this study, Eulerian, RNG (re-normalization group) k-ε and Eulerian wall film models are employed to establish a pipe elbow model that predicts the locations of water phase accumulation. Combining with a limiting diffusion current density, we can use this model to predict the potential corrosion locations and extent. The proposed model is validated by using velocity and water film distributions and it shows substantial agreement with previous models and results in the literature. From the simulation outcomes, a water film is mainly distributed at bottom while the thickness of the water film increases significantly at the pipe elbow. At the elbow bottom the inlet gas velocity increases, this shifts the high corrosion rate zone from elbow rear to front. Corrosion at the elbow front is more serious regardless of the changes in the inlet liquid velocity, elbow angle or water holdup. Meanwhile, when the gas velocity or elbow angle is large, the water film gradually spreads from the elbow bottom to the side and top parts which are in a high corrosion rate zone and more dangerous. Therefore, weak positions where pipeline elbow corrosion failures may occur can be quickly and conveniently computed and determined by the proposed model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZLL关注了科研通微信公众号
刚刚
专注的绾绾完成签到 ,获得积分10
刚刚
韩soso完成签到,获得积分10
1秒前
可爱中蓝完成签到,获得积分10
1秒前
1秒前
1秒前
张道微发布了新的文献求助10
1秒前
咿呀咿呀哟完成签到,获得积分10
2秒前
bill完成签到,获得积分10
2秒前
xunoverflow完成签到,获得积分10
2秒前
陈哈哈完成签到,获得积分10
2秒前
紧张的谷槐完成签到,获得积分10
2秒前
能干的寒凡完成签到,获得积分10
3秒前
3秒前
彭于晏应助你好采纳,获得10
3秒前
小马的可爱老婆完成签到,获得积分10
4秒前
weita完成签到,获得积分10
4秒前
炖地瓜完成签到 ,获得积分10
4秒前
oikikio完成签到,获得积分10
5秒前
2499297293发布了新的文献求助20
5秒前
biudungdung完成签到,获得积分10
5秒前
三水完成签到,获得积分10
5秒前
可爱中蓝发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
YLC完成签到 ,获得积分10
8秒前
方汀完成签到,获得积分10
8秒前
科研通AI6应助兔子采纳,获得10
9秒前
高高珩完成签到 ,获得积分10
9秒前
体贴西装完成签到 ,获得积分10
9秒前
shbkmy完成签到,获得积分10
9秒前
10秒前
星辰大海应助fjhsg25采纳,获得10
11秒前
水123发布了新的文献求助10
12秒前
12秒前
JiaJia发布了新的文献求助10
12秒前
优雅的皮卡丘完成签到,获得积分10
13秒前
13秒前
FashionBoy应助可爱中蓝采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600283
求助须知:如何正确求助?哪些是违规求助? 4685999
关于积分的说明 14841023
捐赠科研通 4676153
什么是DOI,文献DOI怎么找? 2538671
邀请新用户注册赠送积分活动 1505744
关于科研通互助平台的介绍 1471167