State Estimation for Battery Populations by Holistic Analysis of Ultrasonic Waveforms

电池(电) 波形 超声波传感器 电极 声学 衰减 材料科学 多孔性 刚度 计算机科学 化学 物理 复合材料 电信 光学 功率(物理) 雷达 物理化学 量子力学
作者
Elias Galiounas,Rhodri Jervis
出处
期刊:Meeting abstracts 卷期号:MA2023-01 (1): 396-396
标识
DOI:10.1149/ma2023-011396mtgabs
摘要

Battery inspection using ultrasonic waves has gained popularity since 2015 [1] as a non-electrochemical method to estimate battery states. The propagation of sound through the internal structure of a battery is influenced by the mechanical properties and geometry of its constituent layers, which are known to vary during cycling and as the battery ages. In particular, alterations in the stiffness, density, thickness and porosity of the layers affect the speed of sound, its attenuation and length-of-travel. As a result, ultrasonic waveforms recorded during battery operation can be correlated to its internal states, and the accuracy of this mapping is subject to the modelling method used. Most attempts at modelling the acoustic signatures of batteries simplify the task by isolating specific waveform peaks, most commonly the final peak which is an ‘echo’ originating at the posterior side of the cell [2]–[5]. However, different battery layers will influence different waveform portions disproportionately, and such localisations in the analysis could lead to imprecision. More importantly, such localisations do not produce consistent trends across different cells, as shown in the accompanying figure. The figure depicts results from acoustic experiments conducted on seven commercial pouch cells (cells A to G). The cells were of the same type (product id) and chemistry, comprising a graphite negative electrode and a lithium cobalt oxide (LCO) positive electrode. The cells were tested for a total of 45 cycles using CC-CV protocols, out of which 25 cycles were performed at a rate of 1C and are the ones plotted. The remaining 20 cycles were performed at different rates, at intermediate times, and are not shown. The second and last acoustic peaks were isolated and their amplitude and Time-of-Flight (ToF) are plotted for each cell against battery capacity (Q). It is evident that the cell-to-cell variation of these localised acoustic characteristics is large, to the extent that a model relying on these features alone will be unable to generalise to the entire population. It should be noted that the temperature variation among experiments was 8 °C (18.8 - 26.8 °C) which does not explain the cell-to-cell variation seen. Alternative analysis methods that can utilise waveforms in their entirety were proposed in previous work [6]. Artificial neural networks were used to estimate battery state-of-charge (SoC) using multiple features from the time and frequency domains. In the present study we explore extensions of this machine learning approach to exploit feature spaces of even higher dimensions, and we assess the generalisation performance of these state estimators compared to methods based on peak selection. [1] A. G. Hsieh et al. , “Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health,” Energy Environ. Sci. , vol. 8, no. 5, pp. 1569–1577, May 2015, doi: 10.1039/C5EE00111K. [2] P. Ladpli, F. Kopsaftopoulos, and F. K. Chang, “Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators,” J. Power Sources , vol. 384, pp. 342–354, Apr. 2018, doi: 10.1016/J.JPOWSOUR.2018.02.056. [3] L. Gold et al. , “Probing lithium-ion batteries’ state-of-charge using ultrasonic transmission – Concept and laboratory testing,” J. Power Sources , vol. 343, pp. 536–544, Mar. 2017, doi: 10.1016/J.JPOWSOUR.2017.01.090. [4] G. Davies et al. , “State of Charge and State of Health Estimation Using Electrochemical Acoustic Time of Flight Analysis,” J. Electrochem. Soc. , vol. 164, no. 12, p. A2746, Sep. 2017, doi: 10.1149/2.1411712JES. [5] R. E. Owen et al. , “Operando Ultrasonic Monitoring of Lithium-Ion Battery Temperature and Behaviour at Different Cycling Rates and under Drive Cycle Conditions,” J. Electrochem. Soc. , vol. 169, no. 4, p. 40563, Apr. 2022, doi: 10.1149/1945-7111/ac6833. [6] E. Galiounas, T. G. Tranter, R. E. Owen, J. B. Robinson, P. R. Shearing, and D. J. L. Brett, “Battery state-of-charge estimation using machine learning analysis of ultrasonic signatures,” Energy AI , vol. 10, p. 100188, Nov. 2022, doi: 10.1016/J.EGYAI.2022.100188. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安逸1发布了新的文献求助10
1秒前
killCooker发布了新的文献求助10
2秒前
白白白发布了新的文献求助10
3秒前
5秒前
6秒前
今后应助安逸1采纳,获得10
6秒前
tao完成签到 ,获得积分10
7秒前
CodeCraft应助小糖采纳,获得200
9秒前
panda发布了新的文献求助10
10秒前
10秒前
11秒前
sanwan发布了新的文献求助10
11秒前
白白白完成签到,获得积分10
12秒前
xiaomili完成签到,获得积分10
13秒前
郝宝真发布了新的文献求助10
15秒前
killCooker完成签到,获得积分10
15秒前
liuhaunsheng完成签到,获得积分10
16秒前
xiaomili发布了新的文献求助10
16秒前
犹豫觅翠完成签到,获得积分10
16秒前
18秒前
21秒前
21秒前
zxfaaaaa发布了新的文献求助10
22秒前
乐观德地完成签到 ,获得积分10
22秒前
可爱的函函应助羊羊羊采纳,获得10
23秒前
1234完成签到,获得积分10
23秒前
23秒前
25秒前
wyp发布了新的文献求助10
28秒前
安逸1发布了新的文献求助10
28秒前
28秒前
鱼咬羊完成签到,获得积分10
35秒前
wyp完成签到,获得积分10
40秒前
深情安青应助奥沙利楠采纳,获得10
41秒前
wanci应助安逸1采纳,获得10
42秒前
44秒前
丘比特应助zxfaaaaa采纳,获得10
44秒前
45秒前
HEIKU应助hhhk采纳,获得10
46秒前
AZX加油完成签到,获得积分10
46秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165504
求助须知:如何正确求助?哪些是违规求助? 2816567
关于积分的说明 7913125
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388