Exploring Unsupervised Cell Recognition with Prior Self-activation Maps

计算机科学 管道(软件) 人工智能 分割 聚类分析 模式识别(心理学) 依赖关系(UML) 班级(哲学) 机器学习 标记数据 无监督学习 程序设计语言
作者
Pingyi Chen,Chenglu Zhu,Zhongyi Shui,Jiatong Cai,Sunyi Zheng,Shichuan Zhang,Lin Yang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 559-568 被引量:2
标识
DOI:10.1007/978-3-031-43993-3_54
摘要

The success of supervised deep learning models on cell recognition tasks relies on detailed annotations. Many previous works have managed to reduce the dependency on labels. However, considering the large number of cells contained in a patch, costly and inefficient labeling is still inevitable. To this end, we explored label-free methods for cell recognition. Prior self-activation maps (PSM) are proposed to generate pseudo masks as training targets. To be specific, an activation network is trained with self-supervised learning. The gradient information in the shallow layers of the network is aggregated to generate prior self-activation maps. Afterward, a semantic clustering module is then introduced as a pipeline to transform PSMs to pixel-level semantic pseudo masks for downstream tasks. We evaluated our method on two histological datasets: MoNuSeg (cell segmentation) and BCData (multi-class cell detection). Compared with other fully-supervised and weakly-supervised methods, our method can achieve competitive performance without any manual annotations. Our simple but effective framework can also achieve multi-class cell detection which can not be done by existing unsupervised methods. The results show the potential of PSMs that might inspire other research to deal with the hunger for labels in medical area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发发扶完成签到,获得积分10
刚刚
張医铄发布了新的文献求助10
刚刚
投机倒把完成签到 ,获得积分10
1秒前
路见不平完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
eugene完成签到,获得积分10
3秒前
Rubywang完成签到,获得积分10
5秒前
6秒前
kiki发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助YA采纳,获得10
8秒前
8秒前
8秒前
yolo发布了新的文献求助30
8秒前
10秒前
烟花应助森气采纳,获得30
11秒前
CodeCraft应助大西瓜采纳,获得10
12秒前
听说发布了新的文献求助10
13秒前
13秒前
13秒前
yy发布了新的文献求助10
14秒前
Lucas应助張医铄采纳,获得10
14秒前
Lucille发布了新的文献求助10
14秒前
寒食应助una采纳,获得10
14秒前
信仰发布了新的文献求助10
14秒前
a1423072381发布了新的文献求助10
15秒前
15秒前
小蘑菇应助鳗鱼语薇采纳,获得10
17秒前
WWW发布了新的文献求助10
19秒前
科研小白完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
心灵美代芙完成签到,获得积分10
22秒前
a1423072381完成签到,获得积分10
22秒前
Lucille完成签到,获得积分10
22秒前
赘婿应助yy采纳,获得10
23秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267812
求助须知:如何正确求助?哪些是违规求助? 2907217
关于积分的说明 8341064
捐赠科研通 2577922
什么是DOI,文献DOI怎么找? 1401276
科研通“疑难数据库(出版商)”最低求助积分说明 655022
邀请新用户注册赠送积分活动 634046