Online monitoring of crack dynamic development using attention-based deep networks

分割 可视化 计算机科学 计算 深度学习 抓住 人工智能 算法 程序设计语言
作者
Wang Chen,Zhili He,Jian Zhang
出处
期刊:Automation in Construction [Elsevier]
卷期号:154: 105022-105022 被引量:33
标识
DOI:10.1016/j.autcon.2023.105022
摘要

Crack inspection is an essential means to guarantee the healthy service state of infrastructure. However, conventional methods suffer from bottlenecks such as wide blind inspection areas and low efficiency, which make it difficult to reveal the real-time development of cracks. This paper proposes an online crack analysis framework based on deep learning, aiming to effectively broaden the inspectable area and provide real-time feedback on crack development information. The proposed framework includes: (1) Lightweight attention-based crack segmentation U-shape network (CrackSeU). CrackSeU, in comparison to conventional segmentation networks, demonstrates improved fusion between multi-level and multi-scale features. According to the experimental results, CrackSeU achieves enhanced crack segmentation with reduced computation and parameters compared to several advanced network models. (2) Simple and efficient quantitative characterization algorithm. In light of the crack segmentation results, the algorithm can further quantify the actual size of cracks in the physical world, which is convenient for engineers to grasp the structural security status. (3) An online crack monitoring system incorporating the above algorithms. It enables visualization and quantitative monitoring of crack development and establishes a solid foundation for structural safety evaluation. The engineering feasibility and broad application prospect of the proposed framework are further verified by an indoor full-scale concrete beam loading test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助外向小霸王采纳,获得10
刚刚
peach完成签到,获得积分20
1秒前
1秒前
1秒前
Rhannnn完成签到 ,获得积分10
1秒前
动次打次发布了新的文献求助10
1秒前
2秒前
翻斗花园发布了新的文献求助10
2秒前
小马甲应助further采纳,获得10
2秒前
充电宝应助晴舒采纳,获得10
2秒前
脑洞疼应助xijq采纳,获得10
2秒前
852应助李勤_秦礼采纳,获得30
3秒前
斯文败类应助coloy采纳,获得10
4秒前
万里发布了新的文献求助10
4秒前
4秒前
4秒前
xyx277发布了新的文献求助10
4秒前
6秒前
冬日夏岸完成签到,获得积分10
6秒前
6秒前
星辰大海应助Ethereal采纳,获得10
7秒前
科研通AI6应助xz采纳,获得30
7秒前
哈基米发布了新的文献求助10
7秒前
10秒前
10秒前
迷路的紫发布了新的文献求助10
10秒前
缓慢的高山应助semigreen采纳,获得10
11秒前
11秒前
11秒前
跳跃发布了新的文献求助10
12秒前
江峰发布了新的文献求助10
13秒前
彭于晏应助ElvisWu采纳,获得10
13秒前
14秒前
打打应助偌佟采纳,获得10
14秒前
纯情的砖家完成签到,获得积分10
15秒前
15秒前
唠叨的富发布了新的文献求助10
15秒前
汉堡包应助DA采纳,获得10
15秒前
想毕业发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589341
求助须知:如何正确求助?哪些是违规求助? 4674104
关于积分的说明 14791759
捐赠科研通 4628240
什么是DOI,文献DOI怎么找? 2532262
邀请新用户注册赠送积分活动 1500881
关于科研通互助平台的介绍 1468438