Online monitoring of crack dynamic development using attention-based deep networks

分割 可视化 计算机科学 计算 深度学习 抓住 人工智能 算法 程序设计语言
作者
Wang Chen,Zhili He,Jian Zhang
出处
期刊:Automation in Construction [Elsevier]
卷期号:154: 105022-105022 被引量:33
标识
DOI:10.1016/j.autcon.2023.105022
摘要

Crack inspection is an essential means to guarantee the healthy service state of infrastructure. However, conventional methods suffer from bottlenecks such as wide blind inspection areas and low efficiency, which make it difficult to reveal the real-time development of cracks. This paper proposes an online crack analysis framework based on deep learning, aiming to effectively broaden the inspectable area and provide real-time feedback on crack development information. The proposed framework includes: (1) Lightweight attention-based crack segmentation U-shape network (CrackSeU). CrackSeU, in comparison to conventional segmentation networks, demonstrates improved fusion between multi-level and multi-scale features. According to the experimental results, CrackSeU achieves enhanced crack segmentation with reduced computation and parameters compared to several advanced network models. (2) Simple and efficient quantitative characterization algorithm. In light of the crack segmentation results, the algorithm can further quantify the actual size of cracks in the physical world, which is convenient for engineers to grasp the structural security status. (3) An online crack monitoring system incorporating the above algorithms. It enables visualization and quantitative monitoring of crack development and establishes a solid foundation for structural safety evaluation. The engineering feasibility and broad application prospect of the proposed framework are further verified by an indoor full-scale concrete beam loading test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
F_u完成签到,获得积分10
刚刚
囙氼仚完成签到,获得积分10
刚刚
刚刚
1秒前
qda关闭了qda文献求助
1秒前
科研通AI6应助55555558采纳,获得10
1秒前
Owen应助野性的沉鱼采纳,获得10
2秒前
上官若男应助Nymeria采纳,获得30
2秒前
2秒前
唠叨的谷秋完成签到,获得积分20
2秒前
闪耀章鱼发布了新的文献求助10
2秒前
李文浩发布了新的文献求助10
3秒前
彭秋期完成签到,获得积分20
3秒前
一切皆有利于我完成签到,获得积分10
3秒前
3秒前
3秒前
归尘发布了新的文献求助10
3秒前
漂亮幻然完成签到,获得积分10
3秒前
3秒前
林夏完成签到,获得积分10
4秒前
爆米花应助我想静静采纳,获得100
4秒前
4秒前
4秒前
4秒前
5秒前
qweqwe完成签到,获得积分10
5秒前
沉默寄凡发布了新的文献求助10
5秒前
汤飞柏发布了新的文献求助10
6秒前
酷炫的忆山完成签到,获得积分10
6秒前
科研小白发布了新的文献求助10
6秒前
iAlvinz完成签到,获得积分10
6秒前
英俊的铭应助CCCC采纳,获得10
6秒前
6秒前
图图应助楼下太吵了采纳,获得10
6秒前
6秒前
光亮的万天完成签到 ,获得积分10
6秒前
小马甲应助李楠采纳,获得10
6秒前
7秒前
coin完成签到,获得积分10
7秒前
打打应助tango采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506003
求助须知:如何正确求助?哪些是违规求助? 4601533
关于积分的说明 14477031
捐赠科研通 4535471
什么是DOI,文献DOI怎么找? 2485413
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440873