Machine Learning for Data-Driven Last-Mile Delivery Optimization

计算机科学 背景(考古学) 启发式 机器学习 联营 人工智能 帕累托原理 数据挖掘 数学优化 数学 生物 操作系统 古生物学
作者
Sami Serkan Özarık,Paulo da Costa,Alexandre M. Florio
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 27-44 被引量:15
标识
DOI:10.1287/trsc.2022.0029
摘要

In the context of the Amazon Last-Mile Routing Research Challenge, this paper presents a machine-learning framework for optimizing last-mile delivery routes. Contrary to most routing problems where an objective function is clearly defined, in the real-world setting considered in the challenge, an objective is not explicitly specified and must be inferred from data. Leveraging techniques from machine learning and classical traveling salesman problem heuristics, we propose a “pool and select” algorithm to prescribe high-quality last-mile delivery sequences. In the pooling phase, we exploit structural knowledge acquired from data, such as common entry and exit regions observed in training routes. In the selection phase, we predict the scores of candidate sequences with a high-dimensional, pretrained, and regularized regression model. The score prediction model, which includes a large number of predictor variables such as sequence duration, compliance with time windows, earliness, lateness, and structural similarity to training data, displays good prediction accuracy and guides the selection of efficient delivery sequences. Overall, the framework is able to prescribe competitive delivery routes, as measured on out-of-sample routes across several data sets. Given that desired characteristics of high-quality sequences are learned and not assumed, the proposed framework is expected to generalize well to last-mile applications beyond those immediately foreseen in the challenge. Moreover, the method requires less than three seconds to prescribe a sequence given an instance and, thus, is suitable for very large-scale applications. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research was funded by The Dutch Research Council (NWO) Data2Move project under [Grant 628.009.013] and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [Grant 754462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0029 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青山完成签到 ,获得积分10
刚刚
1秒前
科研通AI6应助疑问采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
欢呼山雁完成签到,获得积分10
1秒前
Oct_Y完成签到,获得积分10
2秒前
学茶小白发布了新的文献求助10
2秒前
Bordyfan完成签到,获得积分10
2秒前
Simon发布了新的文献求助20
2秒前
邵振启发布了新的文献求助10
3秒前
小林子完成签到 ,获得积分10
3秒前
David123完成签到,获得积分10
4秒前
三三磊完成签到,获得积分10
4秒前
4秒前
4秒前
zz完成签到,获得积分20
4秒前
SUNXI完成签到,获得积分20
5秒前
5秒前
hhh2018687完成签到,获得积分10
6秒前
Nozomi发布了新的文献求助200
7秒前
7秒前
彭于晏应助大气的从雪采纳,获得10
8秒前
Air云完成签到,获得积分10
8秒前
口爱DI乔巴完成签到,获得积分10
9秒前
学茶小白完成签到,获得积分10
9秒前
kun完成签到 ,获得积分20
9秒前
9秒前
dktrrrr完成签到,获得积分10
10秒前
10秒前
图南完成签到,获得积分10
10秒前
SD完成签到 ,获得积分10
11秒前
Lucas应助小暴采纳,获得10
11秒前
科研通AI6应助bdJ采纳,获得10
11秒前
11秒前
高帅帅完成签到,获得积分10
12秒前
小研pleh完成签到 ,获得积分10
12秒前
12秒前
yuxiao完成签到,获得积分10
12秒前
欢喜的元霜完成签到,获得积分10
12秒前
第三个宇宙完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651622
求助须知:如何正确求助?哪些是违规求助? 4785400
关于积分的说明 15054736
捐赠科研通 4810228
什么是DOI,文献DOI怎么找? 2573047
邀请新用户注册赠送积分活动 1528941
关于科研通互助平台的介绍 1487934