Machine Learning for Data-Driven Last-Mile Delivery Optimization

计算机科学 背景(考古学) 启发式 机器学习 联营 人工智能 帕累托原理 数据挖掘 数学优化 数学 生物 操作系统 古生物学
作者
Sami Serkan Özarık,Paulo da Costa,Alexandre M. Florio
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 27-44 被引量:15
标识
DOI:10.1287/trsc.2022.0029
摘要

In the context of the Amazon Last-Mile Routing Research Challenge, this paper presents a machine-learning framework for optimizing last-mile delivery routes. Contrary to most routing problems where an objective function is clearly defined, in the real-world setting considered in the challenge, an objective is not explicitly specified and must be inferred from data. Leveraging techniques from machine learning and classical traveling salesman problem heuristics, we propose a “pool and select” algorithm to prescribe high-quality last-mile delivery sequences. In the pooling phase, we exploit structural knowledge acquired from data, such as common entry and exit regions observed in training routes. In the selection phase, we predict the scores of candidate sequences with a high-dimensional, pretrained, and regularized regression model. The score prediction model, which includes a large number of predictor variables such as sequence duration, compliance with time windows, earliness, lateness, and structural similarity to training data, displays good prediction accuracy and guides the selection of efficient delivery sequences. Overall, the framework is able to prescribe competitive delivery routes, as measured on out-of-sample routes across several data sets. Given that desired characteristics of high-quality sequences are learned and not assumed, the proposed framework is expected to generalize well to last-mile applications beyond those immediately foreseen in the challenge. Moreover, the method requires less than three seconds to prescribe a sequence given an instance and, thus, is suitable for very large-scale applications. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research was funded by The Dutch Research Council (NWO) Data2Move project under [Grant 628.009.013] and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [Grant 754462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0029 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的小翟完成签到,获得积分10
1秒前
闪闪的乐蕊完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
2秒前
1774181866发布了新的文献求助10
3秒前
wjy321发布了新的文献求助10
4秒前
李小聪完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
852应助研友_ndvWy8采纳,获得10
8秒前
10秒前
凡凡应助虚心的小兔子采纳,获得10
10秒前
FashionBoy应助欢乐通采纳,获得10
11秒前
11秒前
CodeCraft应助泥巴采纳,获得10
12秒前
恰恰恰发布了新的文献求助10
12秒前
12秒前
黄则已发布了新的文献求助10
13秒前
香蕉觅云应助sfliufighting采纳,获得10
14秒前
Liu完成签到 ,获得积分10
15秒前
16秒前
佛说一缘完成签到 ,获得积分10
17秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
魁梧的听荷完成签到 ,获得积分10
20秒前
21秒前
帽子戏法发布了新的文献求助10
21秒前
zhuling发布了新的文献求助10
23秒前
23秒前
23秒前
聪明的老太完成签到,获得积分10
24秒前
24秒前
puhong zhang发布了新的文献求助10
25秒前
1774181866完成签到,获得积分10
25秒前
就爱炸元宵完成签到 ,获得积分10
25秒前
26秒前
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713458
求助须知:如何正确求助?哪些是违规求助? 5215299
关于积分的说明 15270846
捐赠科研通 4865190
什么是DOI,文献DOI怎么找? 2611932
邀请新用户注册赠送积分活动 1562095
关于科研通互助平台的介绍 1519329