Machine Learning for Data-Driven Last-Mile Delivery Optimization

计算机科学 背景(考古学) 启发式 机器学习 联营 人工智能 帕累托原理 数据挖掘 数学优化 数学 生物 操作系统 古生物学
作者
Sami Serkan Özarık,Paulo da Costa,Alexandre M. Florio
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 27-44 被引量:13
标识
DOI:10.1287/trsc.2022.0029
摘要

In the context of the Amazon Last-Mile Routing Research Challenge, this paper presents a machine-learning framework for optimizing last-mile delivery routes. Contrary to most routing problems where an objective function is clearly defined, in the real-world setting considered in the challenge, an objective is not explicitly specified and must be inferred from data. Leveraging techniques from machine learning and classical traveling salesman problem heuristics, we propose a “pool and select” algorithm to prescribe high-quality last-mile delivery sequences. In the pooling phase, we exploit structural knowledge acquired from data, such as common entry and exit regions observed in training routes. In the selection phase, we predict the scores of candidate sequences with a high-dimensional, pretrained, and regularized regression model. The score prediction model, which includes a large number of predictor variables such as sequence duration, compliance with time windows, earliness, lateness, and structural similarity to training data, displays good prediction accuracy and guides the selection of efficient delivery sequences. Overall, the framework is able to prescribe competitive delivery routes, as measured on out-of-sample routes across several data sets. Given that desired characteristics of high-quality sequences are learned and not assumed, the proposed framework is expected to generalize well to last-mile applications beyond those immediately foreseen in the challenge. Moreover, the method requires less than three seconds to prescribe a sequence given an instance and, thus, is suitable for very large-scale applications. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research was funded by The Dutch Research Council (NWO) Data2Move project under [Grant 628.009.013] and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [Grant 754462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0029 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心的定帮完成签到 ,获得积分10
1秒前
3秒前
orixero应助innnnni7777采纳,获得10
3秒前
5秒前
5秒前
乐乐应助移动马桶采纳,获得10
7秒前
聪慧的芷完成签到,获得积分20
8秒前
安静幻枫完成签到,获得积分0
8秒前
9秒前
995发布了新的文献求助10
9秒前
李健春完成签到,获得积分10
11秒前
12秒前
科研通AI2S应助JUNJUN采纳,获得10
12秒前
呼呼发布了新的文献求助20
13秒前
李健春发布了新的文献求助10
16秒前
16秒前
i7完成签到,获得积分10
16秒前
xueshufengbujue完成签到,获得积分10
16秒前
SYLH应助xt_489采纳,获得200
19秒前
Lucas应助唐帅采纳,获得10
19秒前
李泽完成签到,获得积分10
20秒前
HNUSTqsj发布了新的文献求助10
22秒前
猫与咖啡完成签到,获得积分10
23秒前
JamesPei应助科研通管家采纳,获得10
24秒前
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
24秒前
千秋梧完成签到,获得积分10
25秒前
28秒前
Akim应助千秋梧采纳,获得10
29秒前
wanci应助文康采纳,获得10
30秒前
31秒前
31秒前
32秒前
贺岁安发布了新的文献求助10
33秒前
奥里给完成签到 ,获得积分10
34秒前
35秒前
隐形的谷蓝完成签到 ,获得积分10
36秒前
36秒前
浮雨微清发布了新的文献求助10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761721
求助须知:如何正确求助?哪些是违规求助? 3305481
关于积分的说明 10134256
捐赠科研通 3019495
什么是DOI,文献DOI怎么找? 1658190
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751