Machine Learning for Data-Driven Last-Mile Delivery Optimization

计算机科学 背景(考古学) 启发式 机器学习 联营 人工智能 帕累托原理 数据挖掘 数学优化 数学 生物 操作系统 古生物学
作者
Sami Serkan Özarık,Paulo da Costa,Alexandre M. Florio
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 27-44 被引量:15
标识
DOI:10.1287/trsc.2022.0029
摘要

In the context of the Amazon Last-Mile Routing Research Challenge, this paper presents a machine-learning framework for optimizing last-mile delivery routes. Contrary to most routing problems where an objective function is clearly defined, in the real-world setting considered in the challenge, an objective is not explicitly specified and must be inferred from data. Leveraging techniques from machine learning and classical traveling salesman problem heuristics, we propose a “pool and select” algorithm to prescribe high-quality last-mile delivery sequences. In the pooling phase, we exploit structural knowledge acquired from data, such as common entry and exit regions observed in training routes. In the selection phase, we predict the scores of candidate sequences with a high-dimensional, pretrained, and regularized regression model. The score prediction model, which includes a large number of predictor variables such as sequence duration, compliance with time windows, earliness, lateness, and structural similarity to training data, displays good prediction accuracy and guides the selection of efficient delivery sequences. Overall, the framework is able to prescribe competitive delivery routes, as measured on out-of-sample routes across several data sets. Given that desired characteristics of high-quality sequences are learned and not assumed, the proposed framework is expected to generalize well to last-mile applications beyond those immediately foreseen in the challenge. Moreover, the method requires less than three seconds to prescribe a sequence given an instance and, thus, is suitable for very large-scale applications. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research was funded by The Dutch Research Council (NWO) Data2Move project under [Grant 628.009.013] and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [Grant 754462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0029 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
心静如水发布了新的文献求助10
1秒前
SciGPT应助Qiaoclin采纳,获得10
1秒前
阿黎完成签到,获得积分10
2秒前
xin完成签到 ,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
help3q发布了新的文献求助10
6秒前
裴道天发布了新的文献求助30
7秒前
可耐的白菜完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
ikutovaya完成签到,获得积分10
8秒前
爹地发布了新的文献求助10
9秒前
nyt完成签到,获得积分10
11秒前
yyyy发布了新的文献求助10
13秒前
14秒前
komorebi发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
想毕业关注了科研通微信公众号
16秒前
152894发布了新的文献求助30
16秒前
XXXXXX发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
木讷完成签到 ,获得积分10
19秒前
yurunxintian完成签到,获得积分10
19秒前
害怕的冷菱完成签到,获得积分10
19秒前
爹地完成签到,获得积分10
19秒前
20秒前
zhangjianan完成签到,获得积分20
20秒前
wzt发布了新的文献求助10
21秒前
21秒前
OxO完成签到,获得积分10
21秒前
ding应助qiaomingixn采纳,获得10
22秒前
22秒前
23秒前
丧彪完成签到,获得积分10
23秒前
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465