Machine Learning for Data-Driven Last-Mile Delivery Optimization

计算机科学 背景(考古学) 启发式 机器学习 联营 人工智能 帕累托原理 数据挖掘 数学优化 数学 古生物学 生物 操作系统
作者
Sami Serkan Özarık,Paulo da Costa,Alexandre M. Florio
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 27-44 被引量:15
标识
DOI:10.1287/trsc.2022.0029
摘要

In the context of the Amazon Last-Mile Routing Research Challenge, this paper presents a machine-learning framework for optimizing last-mile delivery routes. Contrary to most routing problems where an objective function is clearly defined, in the real-world setting considered in the challenge, an objective is not explicitly specified and must be inferred from data. Leveraging techniques from machine learning and classical traveling salesman problem heuristics, we propose a “pool and select” algorithm to prescribe high-quality last-mile delivery sequences. In the pooling phase, we exploit structural knowledge acquired from data, such as common entry and exit regions observed in training routes. In the selection phase, we predict the scores of candidate sequences with a high-dimensional, pretrained, and regularized regression model. The score prediction model, which includes a large number of predictor variables such as sequence duration, compliance with time windows, earliness, lateness, and structural similarity to training data, displays good prediction accuracy and guides the selection of efficient delivery sequences. Overall, the framework is able to prescribe competitive delivery routes, as measured on out-of-sample routes across several data sets. Given that desired characteristics of high-quality sequences are learned and not assumed, the proposed framework is expected to generalize well to last-mile applications beyond those immediately foreseen in the challenge. Moreover, the method requires less than three seconds to prescribe a sequence given an instance and, thus, is suitable for very large-scale applications. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research was funded by The Dutch Research Council (NWO) Data2Move project under [Grant 628.009.013] and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [Grant 754462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0029 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助曾经采蓝采纳,获得10
刚刚
xiaoli完成签到,获得积分10
刚刚
潇洒枕头发布了新的文献求助10
刚刚
可爱的函函应助神楽采纳,获得10
2秒前
3秒前
勤恳的半邪完成签到,获得积分10
3秒前
5秒前
6秒前
zxf关闭了zxf文献求助
7秒前
8秒前
happiness完成签到 ,获得积分10
8秒前
天天快乐应助李小胖采纳,获得10
9秒前
莫之白完成签到,获得积分10
9秒前
why发布了新的文献求助10
9秒前
阿木木完成签到,获得积分10
10秒前
11秒前
高高高发布了新的文献求助10
11秒前
欧力蟹完成签到,获得积分10
12秒前
正直的白翠完成签到,获得积分20
12秒前
曾经采蓝完成签到,获得积分10
12秒前
myk发布了新的文献求助10
12秒前
13秒前
bhcs完成签到,获得积分10
13秒前
14秒前
科研通AI6应助不倒翁采纳,获得10
15秒前
15秒前
肖恩发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
阮浩天完成签到 ,获得积分10
19秒前
20秒前
20秒前
21秒前
炙热初蓝发布了新的文献求助10
21秒前
bkagyin应助可爱花瓣采纳,获得10
22秒前
体贴凌柏发布了新的文献求助10
24秒前
24秒前
今后应助zhu采纳,获得10
24秒前
英姑应助云帆采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310429
求助须知:如何正确求助?哪些是违规求助? 4454656
关于积分的说明 13860861
捐赠科研通 4342772
什么是DOI,文献DOI怎么找? 2384790
邀请新用户注册赠送积分活动 1379234
关于科研通互助平台的介绍 1347528