Machine Learning for Data-Driven Last-Mile Delivery Optimization

计算机科学 背景(考古学) 启发式 机器学习 联营 人工智能 帕累托原理 数据挖掘 数学优化 数学 生物 操作系统 古生物学
作者
Sami Serkan Özarık,Paulo da Costa,Alexandre M. Florio
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 27-44 被引量:15
标识
DOI:10.1287/trsc.2022.0029
摘要

In the context of the Amazon Last-Mile Routing Research Challenge, this paper presents a machine-learning framework for optimizing last-mile delivery routes. Contrary to most routing problems where an objective function is clearly defined, in the real-world setting considered in the challenge, an objective is not explicitly specified and must be inferred from data. Leveraging techniques from machine learning and classical traveling salesman problem heuristics, we propose a “pool and select” algorithm to prescribe high-quality last-mile delivery sequences. In the pooling phase, we exploit structural knowledge acquired from data, such as common entry and exit regions observed in training routes. In the selection phase, we predict the scores of candidate sequences with a high-dimensional, pretrained, and regularized regression model. The score prediction model, which includes a large number of predictor variables such as sequence duration, compliance with time windows, earliness, lateness, and structural similarity to training data, displays good prediction accuracy and guides the selection of efficient delivery sequences. Overall, the framework is able to prescribe competitive delivery routes, as measured on out-of-sample routes across several data sets. Given that desired characteristics of high-quality sequences are learned and not assumed, the proposed framework is expected to generalize well to last-mile applications beyond those immediately foreseen in the challenge. Moreover, the method requires less than three seconds to prescribe a sequence given an instance and, thus, is suitable for very large-scale applications. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research was funded by The Dutch Research Council (NWO) Data2Move project under [Grant 628.009.013] and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [Grant 754462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0029 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
Akim应助陈豆豆采纳,获得10
2秒前
2秒前
3秒前
3秒前
Vincent完成签到,获得积分20
4秒前
FKKKKSY发布了新的文献求助10
6秒前
星星完成签到,获得积分10
8秒前
SAIL完成签到 ,获得积分10
11秒前
11秒前
华仔应助美满的如柏采纳,获得10
12秒前
111完成签到,获得积分10
13秒前
德国克大夫完成签到,获得积分10
14秒前
keyantong完成签到 ,获得积分10
15秒前
淡然安雁完成签到 ,获得积分10
15秒前
大胆易巧完成签到 ,获得积分10
16秒前
16秒前
123完成签到 ,获得积分10
16秒前
我问问完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
迷失岛完成签到,获得积分10
19秒前
20秒前
护心丹发布了新的文献求助10
20秒前
20秒前
FKKKKSY完成签到,获得积分10
21秒前
DreamLover完成签到,获得积分10
21秒前
21秒前
21秒前
zss完成签到 ,获得积分10
21秒前
wanci应助zz桓桓采纳,获得10
22秒前
炙热芝完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
上官若男应助一灯大师采纳,获得10
24秒前
24秒前
杨小鸿发布了新的文献求助10
25秒前
25秒前
天丶灵灵发布了新的文献求助10
26秒前
Yangon完成签到,获得积分20
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978