清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning for Data-Driven Last-Mile Delivery Optimization

计算机科学 背景(考古学) 启发式 机器学习 联营 人工智能 帕累托原理 数据挖掘 数学优化 数学 古生物学 生物 操作系统
作者
Sami Serkan Özarık,Paulo da Costa,Alexandre M. Florio
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 27-44 被引量:8
标识
DOI:10.1287/trsc.2022.0029
摘要

In the context of the Amazon Last-Mile Routing Research Challenge, this paper presents a machine-learning framework for optimizing last-mile delivery routes. Contrary to most routing problems where an objective function is clearly defined, in the real-world setting considered in the challenge, an objective is not explicitly specified and must be inferred from data. Leveraging techniques from machine learning and classical traveling salesman problem heuristics, we propose a “pool and select” algorithm to prescribe high-quality last-mile delivery sequences. In the pooling phase, we exploit structural knowledge acquired from data, such as common entry and exit regions observed in training routes. In the selection phase, we predict the scores of candidate sequences with a high-dimensional, pretrained, and regularized regression model. The score prediction model, which includes a large number of predictor variables such as sequence duration, compliance with time windows, earliness, lateness, and structural similarity to training data, displays good prediction accuracy and guides the selection of efficient delivery sequences. Overall, the framework is able to prescribe competitive delivery routes, as measured on out-of-sample routes across several data sets. Given that desired characteristics of high-quality sequences are learned and not assumed, the proposed framework is expected to generalize well to last-mile applications beyond those immediately foreseen in the challenge. Moreover, the method requires less than three seconds to prescribe a sequence given an instance and, thus, is suitable for very large-scale applications. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research was funded by The Dutch Research Council (NWO) Data2Move project under [Grant 628.009.013] and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [Grant 754462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0029 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wshiyu完成签到 ,获得积分10
18秒前
方琼燕完成签到 ,获得积分10
1分钟前
钟可可发布了新的文献求助30
1分钟前
丘比特应助neversay4ever采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
neversay4ever发布了新的文献求助10
2分钟前
wanci应助Omni采纳,获得10
2分钟前
ding应助neversay4ever采纳,获得10
3分钟前
宇文非笑完成签到 ,获得积分10
3分钟前
桐桐应助钟可可采纳,获得10
3分钟前
领导范儿应助Mr_老旭采纳,获得30
3分钟前
liwang9301完成签到,获得积分10
3分钟前
3分钟前
囚徒发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Omni发布了新的文献求助10
3分钟前
run发布了新的文献求助10
3分钟前
3分钟前
neversay4ever发布了新的文献求助10
3分钟前
4分钟前
上官若男应助科研通管家采纳,获得10
4分钟前
lanxinge完成签到 ,获得积分10
4分钟前
momi完成签到 ,获得积分10
5分钟前
冬去春来完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
willlee完成签到 ,获得积分10
6分钟前
迷茫的一代完成签到,获得积分10
6分钟前
6分钟前
高兴凝安发布了新的文献求助10
6分钟前
asdfqaz完成签到,获得积分10
6分钟前
隐形曼青应助高兴凝安采纳,获得10
7分钟前
7分钟前
asdfqaz发布了新的文献求助50
7分钟前
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356882
求助须知:如何正确求助?哪些是违规求助? 2980468
关于积分的说明 8694468
捐赠科研通 2662169
什么是DOI,文献DOI怎么找? 1457626
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665767