清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning for Data-Driven Last-Mile Delivery Optimization

计算机科学 背景(考古学) 启发式 机器学习 联营 人工智能 帕累托原理 数据挖掘 数学优化 数学 生物 操作系统 古生物学
作者
Sami Serkan Özarık,Paulo da Costa,Alexandre M. Florio
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 27-44 被引量:15
标识
DOI:10.1287/trsc.2022.0029
摘要

In the context of the Amazon Last-Mile Routing Research Challenge, this paper presents a machine-learning framework for optimizing last-mile delivery routes. Contrary to most routing problems where an objective function is clearly defined, in the real-world setting considered in the challenge, an objective is not explicitly specified and must be inferred from data. Leveraging techniques from machine learning and classical traveling salesman problem heuristics, we propose a “pool and select” algorithm to prescribe high-quality last-mile delivery sequences. In the pooling phase, we exploit structural knowledge acquired from data, such as common entry and exit regions observed in training routes. In the selection phase, we predict the scores of candidate sequences with a high-dimensional, pretrained, and regularized regression model. The score prediction model, which includes a large number of predictor variables such as sequence duration, compliance with time windows, earliness, lateness, and structural similarity to training data, displays good prediction accuracy and guides the selection of efficient delivery sequences. Overall, the framework is able to prescribe competitive delivery routes, as measured on out-of-sample routes across several data sets. Given that desired characteristics of high-quality sequences are learned and not assumed, the proposed framework is expected to generalize well to last-mile applications beyond those immediately foreseen in the challenge. Moreover, the method requires less than three seconds to prescribe a sequence given an instance and, thus, is suitable for very large-scale applications. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research was funded by The Dutch Research Council (NWO) Data2Move project under [Grant 628.009.013] and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [Grant 754462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0029 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助吱吱采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
27秒前
31秒前
威武的翠安完成签到 ,获得积分10
32秒前
小马甲应助阿米尔盼盼采纳,获得10
36秒前
zxx完成签到 ,获得积分0
49秒前
gwbk完成签到,获得积分10
56秒前
HCCha完成签到,获得积分10
1分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
甘川完成签到 ,获得积分10
3分钟前
qq完成签到 ,获得积分10
3分钟前
su完成签到 ,获得积分10
3分钟前
严冰蝶完成签到 ,获得积分10
3分钟前
Jiang 小白发布了新的文献求助10
4分钟前
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
嗯嗯发布了新的文献求助10
4分钟前
嗯嗯完成签到,获得积分10
4分钟前
枪王阿绣完成签到 ,获得积分10
5分钟前
CipherSage应助FXe采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
Bonnienuit完成签到 ,获得积分10
6分钟前
搜集达人应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
田田完成签到 ,获得积分10
6分钟前
吱吱发布了新的文献求助10
7分钟前
吱吱完成签到,获得积分10
7分钟前
高高从霜完成签到 ,获得积分10
7分钟前
领导范儿应助科研通管家采纳,获得10
8分钟前
坚强紫山完成签到,获得积分10
8分钟前
xiaowangwang完成签到 ,获得积分10
8分钟前
鲤鱼山人完成签到 ,获得积分10
8分钟前
V_I_G完成签到 ,获得积分0
8分钟前
8分钟前
9分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584787
求助须知:如何正确求助?哪些是违规求助? 4668667
关于积分的说明 14771569
捐赠科研通 4614474
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499084
关于科研通互助平台的介绍 1467531