Machine Learning for Data-Driven Last-Mile Delivery Optimization

计算机科学 背景(考古学) 启发式 机器学习 联营 人工智能 帕累托原理 数据挖掘 数学优化 数学 生物 操作系统 古生物学
作者
Sami Serkan Özarık,Paulo da Costa,Alexandre M. Florio
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:58 (1): 27-44 被引量:15
标识
DOI:10.1287/trsc.2022.0029
摘要

In the context of the Amazon Last-Mile Routing Research Challenge, this paper presents a machine-learning framework for optimizing last-mile delivery routes. Contrary to most routing problems where an objective function is clearly defined, in the real-world setting considered in the challenge, an objective is not explicitly specified and must be inferred from data. Leveraging techniques from machine learning and classical traveling salesman problem heuristics, we propose a “pool and select” algorithm to prescribe high-quality last-mile delivery sequences. In the pooling phase, we exploit structural knowledge acquired from data, such as common entry and exit regions observed in training routes. In the selection phase, we predict the scores of candidate sequences with a high-dimensional, pretrained, and regularized regression model. The score prediction model, which includes a large number of predictor variables such as sequence duration, compliance with time windows, earliness, lateness, and structural similarity to training data, displays good prediction accuracy and guides the selection of efficient delivery sequences. Overall, the framework is able to prescribe competitive delivery routes, as measured on out-of-sample routes across several data sets. Given that desired characteristics of high-quality sequences are learned and not assumed, the proposed framework is expected to generalize well to last-mile applications beyond those immediately foreseen in the challenge. Moreover, the method requires less than three seconds to prescribe a sequence given an instance and, thus, is suitable for very large-scale applications. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Funding: This research was funded by The Dutch Research Council (NWO) Data2Move project under [Grant 628.009.013] and the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie [Grant 754462]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0029 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
慕青应助宁静致远采纳,获得10
1秒前
健忘四娘完成签到,获得积分10
2秒前
FashionBoy应助公冶愚志采纳,获得10
2秒前
Sia发布了新的文献求助10
3秒前
4秒前
完美世界应助斑马还没睡采纳,获得10
4秒前
4秒前
EKo完成签到,获得积分10
4秒前
1111发布了新的文献求助10
6秒前
宁静致远完成签到,获得积分10
7秒前
图图完成签到 ,获得积分10
7秒前
yibo发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
文茵发布了新的文献求助10
10秒前
11秒前
香蕉觅云应助lei采纳,获得10
11秒前
玖念完成签到,获得积分10
11秒前
12秒前
独孤阳光完成签到,获得积分10
13秒前
后知后觉发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
英俊的铭应助simon采纳,获得10
16秒前
16秒前
ZYC007发布了新的文献求助20
16秒前
18秒前
19秒前
19秒前
20秒前
选择性哑巴完成签到,获得积分10
20秒前
荔枝发布了新的文献求助10
22秒前
23秒前
23秒前
hx0107完成签到,获得积分10
24秒前
稳重龙猫完成签到,获得积分20
24秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959705
求助须知:如何正确求助?哪些是违规求助? 3505951
关于积分的说明 11127133
捐赠科研通 3237931
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871709
科研通“疑难数据库(出版商)”最低求助积分说明 802976