CSTSUNet: A Cross Swin Transformer-Based Siamese U-Shape Network for Change Detection in Remote Sensing Images

计算机科学 特征提取 人工智能 变更检测 变压器 编码器 像素 模式识别(心理学) 计算机视觉 特征(语言学) 语义特征 电压 工程类 语言学 哲学 电气工程 操作系统
作者
Yaping Wu,Lu Li,Nan Wang,Wei Li,Junfang Fan,Ran Tao,Xuezhi Wen,Yanfeng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3326813
摘要

Change detection (CD) in remote sensing images is a critical task that has achieved significant success by deep learning. Current networks often employ pixel-based differencing, proportion, classification-based, or feature concatenation methods to represent changes of interest. However, these methods fail to effectively detect the desired changes, as they are highly sensitive to factors such as atmospheric conditions, lighting variations, and phenological variations, resulting in detection errors. Inspired by the Transformer structure, we adopt a cross-attention mechanism to more robustly extract feature differences between bitemporal images. The motivation of the method is based on the assumption that if there is no change between image pairs, the semantic features from one temporal image can well be represented by the semantic features from another temporal image. Conversely if there is a change, there are significant reconstruction errors. Therefore, a Cross Swin Transformer based Siamese U-shaped network namely CSTSUNet is proposed for remote sensing change detection. CSTSUnet consists of encoder, difference feature extraction, and decoder. The encoder is based on a hierarchical Resnet with the Siamese U-net structure, allowing parallel processing of bitemporal images and extraction of multi-scale features. The difference feature extraction consists of four difference feature extraction modules that compute difference feature at multiple scales. In this module, Cross Swin Transformer is employed in each difference feature extraction module to communicate the information of bitemporal images. The decoder takes in the multi-scale difference features as input, injects details and boundaries iteratively level by level, and makes the change map more and more accurate. We conduct experiments on three public datasets, and the experimental results demonstrate that the proposed CSTSUNet outperforms other state-of-the-art methods in terms of both qualitative and quantitative analyses. Our code is available at https://github.com/l7170/CSTSUNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
贪玩的阿梅完成签到,获得积分10
1秒前
杳鸢应助chrisjiang采纳,获得50
1秒前
沉默的乌冬面完成签到 ,获得积分10
2秒前
七七发布了新的文献求助10
2秒前
2秒前
yuaner发布了新的文献求助10
2秒前
yy发布了新的文献求助10
2秒前
5秒前
5秒前
深情安青应助yuaner采纳,获得10
5秒前
拓跋从阳发布了新的文献求助30
5秒前
0128lun应助666采纳,获得10
5秒前
CodeCraft应助666采纳,获得10
6秒前
Cherubines完成签到,获得积分10
6秒前
背后孤晴发布了新的文献求助10
6秒前
7秒前
英俊的铭应助榴莲小胖采纳,获得10
8秒前
tanlpp发布了新的文献求助10
8秒前
chendumo完成签到,获得积分10
10秒前
10秒前
Camellia应助学勾巴采纳,获得10
10秒前
10秒前
CodeCraft应助AOPs采纳,获得10
11秒前
嫁个养熊猫的完成签到 ,获得积分10
11秒前
11秒前
sltg发布了新的文献求助10
12秒前
MikL发布了新的文献求助10
13秒前
共享精神应助gttlyb采纳,获得20
13秒前
Isi完成签到,获得积分10
14秒前
15秒前
15秒前
善学以致用应助背后孤晴采纳,获得10
16秒前
16秒前
传奇3应助崔win采纳,获得10
16秒前
科目三应助认真的飞扬采纳,获得10
16秒前
18秒前
helinchen完成签到,获得积分10
18秒前
18秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228868
求助须知:如何正确求助?哪些是违规求助? 2876648
关于积分的说明 8195944
捐赠科研通 2543914
什么是DOI,文献DOI怎么找? 1374103
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621521