已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CSTSUNet: A Cross Swin Transformer-Based Siamese U-Shape Network for Change Detection in Remote Sensing Images

计算机科学 特征提取 人工智能 变更检测 变压器 编码器 像素 模式识别(心理学) 计算机视觉 特征(语言学) 语义特征 电压 工程类 语言学 哲学 电气工程 操作系统
作者
Yaping Wu,Lu Li,Nan Wang,Wei Li,Junfang Fan,Ran Tao,Xuezhi Wen,Yanfeng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3326813
摘要

Change detection (CD) in remote sensing images is a critical task that has achieved significant success by deep learning. Current networks often employ pixel-based differencing, proportion, classification-based, or feature concatenation methods to represent changes of interest. However, these methods fail to effectively detect the desired changes, as they are highly sensitive to factors such as atmospheric conditions, lighting variations, and phenological variations, resulting in detection errors. Inspired by the Transformer structure, we adopt a cross-attention mechanism to more robustly extract feature differences between bitemporal images. The motivation of the method is based on the assumption that if there is no change between image pairs, the semantic features from one temporal image can well be represented by the semantic features from another temporal image. Conversely if there is a change, there are significant reconstruction errors. Therefore, a Cross Swin Transformer based Siamese U-shaped network namely CSTSUNet is proposed for remote sensing change detection. CSTSUnet consists of encoder, difference feature extraction, and decoder. The encoder is based on a hierarchical Resnet with the Siamese U-net structure, allowing parallel processing of bitemporal images and extraction of multi-scale features. The difference feature extraction consists of four difference feature extraction modules that compute difference feature at multiple scales. In this module, Cross Swin Transformer is employed in each difference feature extraction module to communicate the information of bitemporal images. The decoder takes in the multi-scale difference features as input, injects details and boundaries iteratively level by level, and makes the change map more and more accurate. We conduct experiments on three public datasets, and the experimental results demonstrate that the proposed CSTSUNet outperforms other state-of-the-art methods in terms of both qualitative and quantitative analyses. Our code is available at https://github.com/l7170/CSTSUNet.git.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助有魅力的雅山采纳,获得10
刚刚
刚刚
1秒前
Twinkle完成签到,获得积分10
4秒前
zeta完成签到,获得积分10
4秒前
商毛毛发布了新的文献求助10
4秒前
4秒前
xiaofeiyan发布了新的文献求助10
5秒前
领导范儿应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
coolkid发布了新的文献求助10
7秒前
8秒前
开心凌柏发布了新的文献求助10
8秒前
leemonster完成签到,获得积分10
10秒前
11秒前
勤恳依柔完成签到,获得积分10
13秒前
13秒前
14秒前
王WW发布了新的文献求助10
14秒前
xixixi发布了新的文献求助20
17秒前
天才J完成签到,获得积分10
18秒前
领导范儿应助mogekkko采纳,获得10
19秒前
19秒前
小居居完成签到,获得积分10
20秒前
22秒前
22秒前
眼睛大的冷风完成签到 ,获得积分10
22秒前
科研通AI6应助QQ采纳,获得10
23秒前
23秒前
不安如容关注了科研通微信公众号
23秒前
光亮书南发布了新的文献求助10
24秒前
24秒前
MeetAgainLZH发布了新的文献求助10
26秒前
dinghongmei完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627406
求助须知:如何正确求助?哪些是违规求助? 4713679
关于积分的说明 14962084
捐赠科研通 4784593
什么是DOI,文献DOI怎么找? 2554835
邀请新用户注册赠送积分活动 1516330
关于科研通互助平台的介绍 1476693