CSTSUNet: A Cross Swin Transformer-Based Siamese U-Shape Network for Change Detection in Remote Sensing Images

计算机科学 特征提取 人工智能 变更检测 变压器 编码器 像素 模式识别(心理学) 计算机视觉 特征(语言学) 语义特征 电压 工程类 语言学 哲学 电气工程 操作系统
作者
Yaping Wu,Lu Li,Nan Wang,Wei Li,Junfang Fan,Ran Tao,Xuezhi Wen,Yanfeng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3326813
摘要

Change detection (CD) in remote sensing images is a critical task that has achieved significant success by deep learning. Current networks often employ pixel-based differencing, proportion, classification-based, or feature concatenation methods to represent changes of interest. However, these methods fail to effectively detect the desired changes, as they are highly sensitive to factors such as atmospheric conditions, lighting variations, and phenological variations, resulting in detection errors. Inspired by the Transformer structure, we adopt a cross-attention mechanism to more robustly extract feature differences between bitemporal images. The motivation of the method is based on the assumption that if there is no change between image pairs, the semantic features from one temporal image can well be represented by the semantic features from another temporal image. Conversely if there is a change, there are significant reconstruction errors. Therefore, a Cross Swin Transformer based Siamese U-shaped network namely CSTSUNet is proposed for remote sensing change detection. CSTSUnet consists of encoder, difference feature extraction, and decoder. The encoder is based on a hierarchical Resnet with the Siamese U-net structure, allowing parallel processing of bitemporal images and extraction of multi-scale features. The difference feature extraction consists of four difference feature extraction modules that compute difference feature at multiple scales. In this module, Cross Swin Transformer is employed in each difference feature extraction module to communicate the information of bitemporal images. The decoder takes in the multi-scale difference features as input, injects details and boundaries iteratively level by level, and makes the change map more and more accurate. We conduct experiments on three public datasets, and the experimental results demonstrate that the proposed CSTSUNet outperforms other state-of-the-art methods in terms of both qualitative and quantitative analyses. Our code is available at https://github.com/l7170/CSTSUNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhzha辉完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
ddd发布了新的文献求助10
1秒前
友好无敌关注了科研通微信公众号
1秒前
黄浩文完成签到,获得积分10
2秒前
orixero应助终梦采纳,获得10
2秒前
2秒前
2秒前
DSH发布了新的文献求助10
3秒前
3秒前
懒得起名关注了科研通微信公众号
3秒前
我不吃胡萝卜完成签到,获得积分10
4秒前
4秒前
zhzha辉发布了新的文献求助10
4秒前
mmx完成签到,获得积分10
4秒前
hhhh发布了新的文献求助10
4秒前
fkhuny发布了新的文献求助10
5秒前
NexusExplorer应助一忽儿左采纳,获得10
5秒前
5秒前
JamesPei应助快乐梦松采纳,获得10
5秒前
可爱的函函应助ddd采纳,获得10
6秒前
Fiona发布了新的文献求助10
6秒前
h7nho完成签到,获得积分10
6秒前
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
上官若男应助asd采纳,获得10
7秒前
野草完成签到 ,获得积分10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
songyuan发布了新的文献求助10
7秒前
老阎应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
7秒前
DijiaXu应助科研通管家采纳,获得10
7秒前
活力初晴完成签到,获得积分10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406