CSTSUNet: A Cross Swin Transformer-Based Siamese U-Shape Network for Change Detection in Remote Sensing Images

计算机科学 特征提取 人工智能 变更检测 变压器 编码器 像素 模式识别(心理学) 计算机视觉 特征(语言学) 语义特征 电压 工程类 语言学 哲学 电气工程 操作系统
作者
Yaping Wu,Lu Li,Nan Wang,Wei Li,Junfang Fan,Ran Tao,Xuezhi Wen,Yanfeng Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3326813
摘要

Change detection (CD) in remote sensing images is a critical task that has achieved significant success by deep learning. Current networks often employ pixel-based differencing, proportion, classification-based, or feature concatenation methods to represent changes of interest. However, these methods fail to effectively detect the desired changes, as they are highly sensitive to factors such as atmospheric conditions, lighting variations, and phenological variations, resulting in detection errors. Inspired by the Transformer structure, we adopt a cross-attention mechanism to more robustly extract feature differences between bitemporal images. The motivation of the method is based on the assumption that if there is no change between image pairs, the semantic features from one temporal image can well be represented by the semantic features from another temporal image. Conversely if there is a change, there are significant reconstruction errors. Therefore, a Cross Swin Transformer based Siamese U-shaped network namely CSTSUNet is proposed for remote sensing change detection. CSTSUnet consists of encoder, difference feature extraction, and decoder. The encoder is based on a hierarchical Resnet with the Siamese U-net structure, allowing parallel processing of bitemporal images and extraction of multi-scale features. The difference feature extraction consists of four difference feature extraction modules that compute difference feature at multiple scales. In this module, Cross Swin Transformer is employed in each difference feature extraction module to communicate the information of bitemporal images. The decoder takes in the multi-scale difference features as input, injects details and boundaries iteratively level by level, and makes the change map more and more accurate. We conduct experiments on three public datasets, and the experimental results demonstrate that the proposed CSTSUNet outperforms other state-of-the-art methods in terms of both qualitative and quantitative analyses. Our code is available at https://github.com/l7170/CSTSUNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Alan弟弟发布了新的文献求助10
刚刚
1秒前
LLL发布了新的文献求助10
1秒前
bkagyin应助Yena采纳,获得30
2秒前
Leo完成签到,获得积分10
2秒前
高高珠完成签到 ,获得积分10
2秒前
gogoyoco发布了新的文献求助10
3秒前
王大可发布了新的文献求助15
3秒前
我是老大应助Derek采纳,获得10
3秒前
4秒前
安诺完成签到,获得积分10
4秒前
4秒前
6秒前
6秒前
braving发布了新的文献求助10
6秒前
MING完成签到,获得积分10
6秒前
现安完成签到,获得积分10
7秒前
norberta完成签到,获得积分10
8秒前
8秒前
bkagyin应助舒适从菡采纳,获得10
8秒前
gogoyoco完成签到,获得积分20
9秒前
xzy发布了新的文献求助10
10秒前
Aurora完成签到,获得积分10
10秒前
TTTJY发布了新的文献求助10
10秒前
10秒前
小蘑菇应助Alan弟弟采纳,获得10
11秒前
可爱的函函应助蔡榕采纳,获得10
11秒前
12秒前
whh完成签到,获得积分10
12秒前
fd163c应助刘洋采纳,获得10
13秒前
13秒前
呼啦啦发布了新的文献求助10
14秒前
wmm完成签到,获得积分10
14秒前
浩浩浩发布了新的文献求助10
15秒前
15秒前
传奇3应助Rita采纳,获得10
15秒前
15秒前
充电宝应助完好采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940739
求助须知:如何正确求助?哪些是违规求助? 4206869
关于积分的说明 13075712
捐赠科研通 3985443
什么是DOI,文献DOI怎么找? 2182202
邀请新用户注册赠送积分活动 1197798
关于科研通互助平台的介绍 1110099