An improved fault diagnosis method for rolling bearings based on wavelet packet decomposition and network parameter optimization

断层(地质) 计算机科学 深信不疑网络 方位(导航) 超参数 小波包分解 算法 网络数据包 人工智能 小波 人工神经网络 小波变换 地质学 计算机网络 地震学
作者
Fangyuan Zhao,Yulian Jiang,Chao Cheng,Shenquan Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025004-025004 被引量:4
标识
DOI:10.1088/1361-6501/ad0691
摘要

Abstract The diagnosis of faults in rolling bearings plays a critical role in monitoring the condition and maintaining the performance of rotating machinery, while also preventing major accidents. In this article, a new approach to diagnosing faults in rolling bearings is proposed, using wavelet packet decomposition (WPD) for features extraction and the chaotic sparrow search optimization algorithms (CSSOAs) to optimize the parameters of a deep belief network (DBN). Firstly, the WPD method is used for the decomposition of vibration signals in rolling bearings, which are decomposed into three layers, and reconstruction is performed on the nodes of the last layer based on the decomposition. Furthermore, the energy characteristics of the reconstructed nodes are then utilized as inputs to DBN, and the CSSOA is employed to optimize the hyperparameters of DBN. Ultimately, a fault diagnosis model combining WPD with optimizing parameters is presented. This model is validated on bearing datasets from Case Western Reserve University (CWRU) and Jiangnan University (JNU). Experimental results indicate that the average accuracy achieved when modeling with WPD-CSSOA-DBN on the CWRU dataset is 98.24 % , with a root mean square error of 0.0713. On the JNU bearing dataset, the modeling achieves an average accuracy of 95.15 % with a root mean square error of 0.1018. Compared to other methods, this approach demonstrates stronger feature extraction capabilities and outstanding rolling bearing fault diagnosis abilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1221211应助科研通管家采纳,获得10
刚刚
刚刚
liudiqiu应助科研通管家采纳,获得10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得30
1秒前
1秒前
欣慰友梅发布了新的文献求助10
1秒前
Serendipity应助科研通管家采纳,获得20
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
YDL应助科研通管家采纳,获得30
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
幸福果汁完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
mc发布了新的文献求助10
3秒前
3秒前
meng完成签到,获得积分10
4秒前
4秒前
科研通AI5应助kk采纳,获得10
4秒前
qing发布了新的文献求助10
4秒前
所所应助韦威风采纳,获得10
5秒前
5秒前
大七发布了新的文献求助10
5秒前
勤奋白昼完成签到,获得积分10
5秒前
通~发布了新的文献求助10
6秒前
眼角流星完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762