An improved fault diagnosis method for rolling bearings based on wavelet packet decomposition and network parameter optimization

断层(地质) 计算机科学 深信不疑网络 方位(导航) 超参数 小波包分解 算法 网络数据包 人工智能 小波 人工神经网络 小波变换 地质学 计算机网络 地震学
作者
Fangyuan Zhao,Yulian Jiang,Chao Cheng,Shenquan Wang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (2): 025004-025004 被引量:4
标识
DOI:10.1088/1361-6501/ad0691
摘要

Abstract The diagnosis of faults in rolling bearings plays a critical role in monitoring the condition and maintaining the performance of rotating machinery, while also preventing major accidents. In this article, a new approach to diagnosing faults in rolling bearings is proposed, using wavelet packet decomposition (WPD) for features extraction and the chaotic sparrow search optimization algorithms (CSSOAs) to optimize the parameters of a deep belief network (DBN). Firstly, the WPD method is used for the decomposition of vibration signals in rolling bearings, which are decomposed into three layers, and reconstruction is performed on the nodes of the last layer based on the decomposition. Furthermore, the energy characteristics of the reconstructed nodes are then utilized as inputs to DBN, and the CSSOA is employed to optimize the hyperparameters of DBN. Ultimately, a fault diagnosis model combining WPD with optimizing parameters is presented. This model is validated on bearing datasets from Case Western Reserve University (CWRU) and Jiangnan University (JNU). Experimental results indicate that the average accuracy achieved when modeling with WPD-CSSOA-DBN on the CWRU dataset is 98.24 % , with a root mean square error of 0.0713. On the JNU bearing dataset, the modeling achieves an average accuracy of 95.15 % with a root mean square error of 0.1018. Compared to other methods, this approach demonstrates stronger feature extraction capabilities and outstanding rolling bearing fault diagnosis abilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助康桥采纳,获得10
1秒前
huabaobao完成签到,获得积分20
1秒前
12345完成签到 ,获得积分10
1秒前
2秒前
彭于彦祖应助zzz采纳,获得30
2秒前
米里迷路发布了新的文献求助10
2秒前
3秒前
3秒前
lxy完成签到,获得积分10
4秒前
LBX应助Max采纳,获得30
4秒前
快乐难敌发布了新的文献求助10
4秒前
4秒前
斯文败类应助luo采纳,获得10
5秒前
GLN发布了新的文献求助10
6秒前
脑洞疼应助海阔天空采纳,获得30
6秒前
6秒前
DLL完成签到 ,获得积分10
6秒前
南冥发布了新的文献求助10
7秒前
lxy发布了新的文献求助10
7秒前
扶溪筠完成签到,获得积分10
8秒前
你大米哥完成签到 ,获得积分10
8秒前
NexusExplorer应助涵泽采纳,获得10
8秒前
9秒前
难过的安双完成签到,获得积分10
9秒前
艾小晗完成签到,获得积分10
10秒前
知许解夏应助风趣飞柏采纳,获得10
10秒前
11秒前
金世航发布了新的文献求助20
13秒前
Jie_Zhang完成签到,获得积分20
13秒前
Akim应助真实的亦竹采纳,获得10
13秒前
14秒前
14秒前
陌疑应助失眠的香菇采纳,获得10
14秒前
RR发布了新的文献求助10
14秒前
NexusExplorer应助wly9399375采纳,获得10
15秒前
15秒前
我是老大应助独特的凡波采纳,获得10
15秒前
15秒前
人人发布了新的文献求助10
15秒前
所所应助严不平采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271