Evaluation of machine learning method in genomic selection for growth traits of Pacific white shrimp

生物 小虾 遗传力 选择(遗传算法) 特质 头胸 单核苷酸多态性 基因组选择 遗传相关 白色(突变) 统计 遗传学 生物技术 机器学习 渔业 遗传变异 基因 数学 计算机科学 基因型 甲壳动物 程序设计语言
作者
Z. David Luo,Yang Yu,Zhenning Bao,Fuhua Li
出处
期刊:Aquaculture [Elsevier]
卷期号:581: 740376-740376 被引量:1
标识
DOI:10.1016/j.aquaculture.2023.740376
摘要

The Pacific white shrimp is one of the most important species in the aquaculture industry worldwide, and the growth is regarded as primary trait for selective breeding programmes. In this study, the heritability and genetic correlation of two growth traits, including body length (BL) and the ratio of abdomen length to cephalothorax length (AL/CL) were analyzed, and the genomic prediction based on different genomic selection models including machine learning method were evaluated. The heritabilities of BL and AL/CL were 0.25 ± 0.04 and 0.07 ± 0.03, respectively. The two phenotypes showed moderate negative correlations (−0.70 ± 0.14). Comparison of the different prediction models showed that NeuralNet had the highest prediction accuracy. The prediction accuracy of NeuralNet increased by about 10% compared to GBLUP. Furthermore, NeuralNet presented the highest prediction accuracy under different marker densities, and the prediction accuracy using 1000 SNPs was similar to that estimated by total SNPs. When comparing multi-trait models (MTM) and single-trait models (STM), NeuralNet outperformed the other methods, which increased prediction accuracy by around 30%. Overall, the NeuralNet model may have better application prospects for genomic selection breeding in shrimp. These results provide a strong basis for accelerating the application of genomic selection breeding in shrimp improvement programmes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
打打应助无情的白桃采纳,获得10
1秒前
香蕉觅云应助与光同晨采纳,获得10
2秒前
2秒前
小蘑菇应助clm采纳,获得10
2秒前
yhnsag完成签到,获得积分10
2秒前
Lin完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
4秒前
Rain发布了新的文献求助10
4秒前
butiflow完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
务实的唇膏完成签到,获得积分10
5秒前
Will完成签到,获得积分10
5秒前
5秒前
Micky完成签到,获得积分10
5秒前
ape发布了新的文献求助10
5秒前
十七发布了新的文献求助10
6秒前
gyt发布了新的文献求助10
6秒前
时尚战斗机完成签到,获得积分10
6秒前
6秒前
华安发布了新的文献求助30
7秒前
7秒前
迟大猫应助dpp采纳,获得10
7秒前
8秒前
astral完成签到,获得积分10
8秒前
科研通AI5应助HJJHJH采纳,获得30
9秒前
Isabel发布了新的文献求助10
9秒前
9秒前
桑姊发布了新的文献求助10
10秒前
10秒前
Cyrus2022完成签到,获得积分10
10秒前
古哉完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762