Evaluation of machine learning method in genomic selection for growth traits of Pacific white shrimp

生物 小虾 遗传力 选择(遗传算法) 特质 头胸 单核苷酸多态性 基因组选择 遗传相关 白色(突变) 统计 遗传学 生物技术 机器学习 渔业 遗传变异 基因 数学 计算机科学 基因型 甲壳动物 程序设计语言
作者
Z. David Luo,Yang Yu,Zhenning Bao,Fuhua Li
出处
期刊:Aquaculture [Elsevier]
卷期号:581: 740376-740376 被引量:11
标识
DOI:10.1016/j.aquaculture.2023.740376
摘要

The Pacific white shrimp is one of the most important species in the aquaculture industry worldwide, and the growth is regarded as primary trait for selective breeding programmes. In this study, the heritability and genetic correlation of two growth traits, including body length (BL) and the ratio of abdomen length to cephalothorax length (AL/CL) were analyzed, and the genomic prediction based on different genomic selection models including machine learning method were evaluated. The heritabilities of BL and AL/CL were 0.25 ± 0.04 and 0.07 ± 0.03, respectively. The two phenotypes showed moderate negative correlations (−0.70 ± 0.14). Comparison of the different prediction models showed that NeuralNet had the highest prediction accuracy. The prediction accuracy of NeuralNet increased by about 10% compared to GBLUP. Furthermore, NeuralNet presented the highest prediction accuracy under different marker densities, and the prediction accuracy using 1000 SNPs was similar to that estimated by total SNPs. When comparing multi-trait models (MTM) and single-trait models (STM), NeuralNet outperformed the other methods, which increased prediction accuracy by around 30%. Overall, the NeuralNet model may have better application prospects for genomic selection breeding in shrimp. These results provide a strong basis for accelerating the application of genomic selection breeding in shrimp improvement programmes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯前浪完成签到,获得积分20
1秒前
木木木发布了新的文献求助10
2秒前
2秒前
4秒前
4秒前
QDU应助第五个完全数采纳,获得20
4秒前
tiptip应助李里哩采纳,获得10
5秒前
SciGPT应助李里哩采纳,获得10
5秒前
5秒前
周繁发布了新的文献求助10
5秒前
优秀思卉完成签到,获得积分10
5秒前
大气的苠完成签到,获得积分10
6秒前
Hello应助科研鲁宾孙采纳,获得10
6秒前
赘婿应助冯前浪采纳,获得30
7秒前
ZJFL发布了新的文献求助10
7秒前
7秒前
酒剑仙完成签到,获得积分10
8秒前
一一发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
11秒前
Auditor发布了新的文献求助10
12秒前
CodeCraft应助帅气航空采纳,获得10
13秒前
13秒前
Awei完成签到,获得积分10
14秒前
小桶爸爸发布了新的文献求助10
14秒前
15秒前
16秒前
16秒前
今后应助早睡早起的安采纳,获得30
16秒前
zhou发布了新的文献求助10
17秒前
18秒前
18秒前
微凉完成签到 ,获得积分10
18秒前
huhu发布了新的文献求助10
20秒前
20秒前
20秒前
汉堡包应助wind采纳,获得10
20秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978