Einsatz künstlicher Intelligenz mittels Deep Learning in der dermatopathologischen Routinediagnostik des Basalzellkarzinoms

妇科 物理 政治学 医学 哲学
作者
Nicole Duschner,Daniel Otero Baguer,Maximilian Schmidt,Klaus Griewank,Eva Hadaschik,Sonja Hetzer,Bettina Wiepjes,Jean Le’Clerc Arrastia,Philipp Jansen,Peter Maaß,Jörg Schaller
出处
期刊:Journal der Deutschen Dermatologischen Gesellschaft [Wiley]
卷期号:21 (11): 1329-1338
标识
DOI:10.1111/ddg.15180_g
摘要

Zusammenfassung Hintergrund Dermatopathologische Institute stehen aufgrund immer höherer Anforderungen bei andererseits schwindenden Ressourcen vor zunehmenden Herausforderungen. Basalzellkarzinome stellen einen Großteil des Einsendeguts mit entsprechendem Arbeitsaufwand dar. Gleichzeitig ermöglicht die Digitalisierung von Glasobjektträgern den Einsatz künstlicher Intelligenz (KI)‐basierter Verfahren in der Dermatopathologie. Bislang haben diese Verfahren keinen Einzug in die Routinediagnostik gefunden. Ziel dieser Studie war daher, den Einsatz eines KI‐basierten Modells zur automatisierten Basalzellkarzinom‐Erkennung zu etablieren. Patienten und Methodik In drei dermatopathologischen Zentren wurden während des täglichen Routinebetriebs Basalzellkarzinom‐Fälle digitalisiert und sowohl klassisch am Mikroskop als auch mittels KI‐basierter Methodik basierend auf neuronalen Netzen mit U‐Net‐ Architektur befundet. Ergebnisse Im Routinebetrieb erzielte das Modell eine Sensitivität von 98,23 % und eine Spezifität von 98,51 % (Zentrum 1). Das Modell konnte übergangslos in den anderen Zentren Einsatz finden und erreichte ähnlich hohe Genauigkeiten in der Basalzellkarzinom‐Erkennung (Sensitivität von 97,67 % beziehungsweise 98,57 %, Spezifität von 96,77 % beziehungsweise 98,73 %). Zusätzlich wurden eine automatisierte, KI‐basierte Basalzellkarzinom‐Subtypisierung und Tumordickenmessung etabliert. Schlussfolgerungen KI‐basierte Verfahren können mit einer hohen Genauigkeit im Routinebetrieb Basalzellkarzinome erkennen und signifikant die dermatopathologische Arbeit unterstützen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨柏完成签到 ,获得积分10
1秒前
da发布了新的文献求助10
1秒前
1秒前
3秒前
4秒前
南岸末阴完成签到 ,获得积分10
4秒前
CipherSage应助q792309106采纳,获得10
4秒前
超级的笑天完成签到,获得积分10
4秒前
gxmu6322完成签到,获得积分10
5秒前
5秒前
5秒前
木木发布了新的文献求助10
6秒前
6秒前
Ava应助农大长工采纳,获得10
8秒前
8秒前
8秒前
Brian_Fang发布了新的文献求助10
8秒前
XHW发布了新的文献求助10
8秒前
星辰大海应助xzf1996采纳,获得10
9秒前
傲慢葫芦发布了新的文献求助10
9秒前
10秒前
Y哦莫哦莫完成签到,获得积分10
10秒前
11秒前
颜凡桃发布了新的文献求助30
11秒前
11秒前
12秒前
帝国之刃发布了新的文献求助10
12秒前
13秒前
13秒前
naturecandy发布了新的文献求助10
13秒前
13秒前
Aria发布了新的文献求助10
14秒前
15秒前
16秒前
Brian_Fang完成签到,获得积分10
16秒前
慕青应助kyrie采纳,获得30
16秒前
16秒前
Jasper应助一口蛋黄苏采纳,获得10
16秒前
可可完成签到 ,获得积分10
17秒前
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163