亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Einsatz künstlicher Intelligenz mittels Deep Learning in der dermatopathologischen Routinediagnostik des Basalzellkarzinoms

妇科 物理 政治学 医学 哲学
作者
Nicole Duschner,Daniel Otero Baguer,Maximilian Schmidt,Klaus Griewank,Eva Hadaschik,Sonja Hetzer,Bettina Wiepjes,Jean Le’Clerc Arrastia,Philipp Jansen,Peter Maaß,Jörg Schaller
出处
期刊:Journal der Deutschen Dermatologischen Gesellschaft [Wiley]
卷期号:21 (11): 1329-1338
标识
DOI:10.1111/ddg.15180_g
摘要

Zusammenfassung Hintergrund Dermatopathologische Institute stehen aufgrund immer höherer Anforderungen bei andererseits schwindenden Ressourcen vor zunehmenden Herausforderungen. Basalzellkarzinome stellen einen Großteil des Einsendeguts mit entsprechendem Arbeitsaufwand dar. Gleichzeitig ermöglicht die Digitalisierung von Glasobjektträgern den Einsatz künstlicher Intelligenz (KI)‐basierter Verfahren in der Dermatopathologie. Bislang haben diese Verfahren keinen Einzug in die Routinediagnostik gefunden. Ziel dieser Studie war daher, den Einsatz eines KI‐basierten Modells zur automatisierten Basalzellkarzinom‐Erkennung zu etablieren. Patienten und Methodik In drei dermatopathologischen Zentren wurden während des täglichen Routinebetriebs Basalzellkarzinom‐Fälle digitalisiert und sowohl klassisch am Mikroskop als auch mittels KI‐basierter Methodik basierend auf neuronalen Netzen mit U‐Net‐ Architektur befundet. Ergebnisse Im Routinebetrieb erzielte das Modell eine Sensitivität von 98,23 % und eine Spezifität von 98,51 % (Zentrum 1). Das Modell konnte übergangslos in den anderen Zentren Einsatz finden und erreichte ähnlich hohe Genauigkeiten in der Basalzellkarzinom‐Erkennung (Sensitivität von 97,67 % beziehungsweise 98,57 %, Spezifität von 96,77 % beziehungsweise 98,73 %). Zusätzlich wurden eine automatisierte, KI‐basierte Basalzellkarzinom‐Subtypisierung und Tumordickenmessung etabliert. Schlussfolgerungen KI‐basierte Verfahren können mit einer hohen Genauigkeit im Routinebetrieb Basalzellkarzinome erkennen und signifikant die dermatopathologische Arbeit unterstützen.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小绿发布了新的文献求助50
1分钟前
超级的千青完成签到 ,获得积分10
1分钟前
ding应助知闲采纳,获得10
1分钟前
1分钟前
满意机器猫完成签到 ,获得积分10
1分钟前
宁不正发布了新的文献求助10
1分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
情怀应助科研通管家采纳,获得10
2分钟前
2分钟前
赘婿应助宁不正采纳,获得10
2分钟前
2分钟前
2分钟前
小小绿完成签到,获得积分20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
Sylvia_J完成签到 ,获得积分10
3分钟前
3分钟前
cy0824完成签到 ,获得积分10
3分钟前
hhh完成签到 ,获得积分10
4分钟前
Shicheng完成签到,获得积分10
4分钟前
汉堡包应助科研通管家采纳,获得10
6分钟前
wangfaqing942完成签到 ,获得积分10
7分钟前
7分钟前
飞天的鱼发布了新的文献求助10
7分钟前
飞天的鱼完成签到,获得积分10
7分钟前
科研通AI6应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
在水一方完成签到,获得积分0
8分钟前
科研通AI2S应助hjy采纳,获得10
8分钟前
fcycukvujblk完成签到,获得积分10
8分钟前
8分钟前
hjy发布了新的文献求助10
8分钟前
9分钟前
宁不正发布了新的文献求助10
9分钟前
AixLeft完成签到 ,获得积分10
11分钟前
11分钟前
知闲发布了新的文献求助10
11分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
朴实初夏完成签到 ,获得积分10
12分钟前
widesky777完成签到 ,获得积分0
13分钟前
zxcvvbb1001完成签到 ,获得积分10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635124
求助须知:如何正确求助?哪些是违规求助? 4734822
关于积分的说明 14989758
捐赠科研通 4792826
什么是DOI,文献DOI怎么找? 2559937
邀请新用户注册赠送积分活动 1520202
关于科研通互助平台的介绍 1480262