亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

PV module power prediction by deep learning on electroluminescence images - Assessing the physics learned by a convolutional neural network

卷积神经网络 人工神经网络 人工智能 深度学习 一般化 计算机科学 工作流程 电致发光 机器学习 特征(语言学) 模式识别(心理学) 数学 纳米技术 材料科学 数据库 数学分析 语言学 哲学 图层(电子)
作者
Larry Lüer,Karen Forberich,Johannes Hepp,Claudia Buerhop‐Lutz,Thilo Winkler,Sandy Rodrigues,Mathis Hoffmann,Bernd Doll,Jens Hauch,Christoph J. Brabec,Ian Marius Peters
出处
期刊:Solar Energy Materials and Solar Cells [Elsevier BV]
卷期号:264: 112621-112621
标识
DOI:10.1016/j.solmat.2023.112621
摘要

Fast and reliable performance monitoring of photovoltaic modules is essential for economic forecasting in large-scale installations. Deep Learning methods, such as convolutional neural networks, have the potential to predict module power directly from electroluminescence images in an automated workflow. However, neural networks must be trained using large numbers of electroluminescence images of defective modules. Due to budgetary or technical limitations, these training images will always be biased, limiting generalization. Here, we demonstrate a transparent method to discriminate the information learned by a convolutional neural network into generally valid physics and bias. Learning of physics is assessed by providing an artificial, unbiased feature list, which is converted into synthetic electroluminescence images. Using these images, we compare the predictions of the neural network trained on the biased dataset to those of a physics-based equivalent. Bias is assessed by a closer look at the deviations between the predictions from the equivalent circuit model and the trained neural network. The assessment of physics knowledge incorporated by a Deep Learning method gives insight into how the method achieves its predictive capacity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
srx完成签到 ,获得积分10
3秒前
李亚宁完成签到,获得积分10
5秒前
今日发布了新的文献求助10
6秒前
小二郎应助科研通管家采纳,获得10
12秒前
12秒前
33秒前
Akim应助平淡的洪纲采纳,获得10
33秒前
36秒前
38秒前
ster223发布了新的文献求助10
39秒前
47秒前
51秒前
婉莹完成签到 ,获得积分10
1分钟前
旺仔先生完成签到 ,获得积分10
1分钟前
1933644015完成签到,获得积分10
1分钟前
1分钟前
幸运小狗完成签到,获得积分20
1分钟前
1分钟前
cc完成签到,获得积分20
1分钟前
情怀应助尊敬的芷卉采纳,获得10
1分钟前
研友_X89o6n完成签到,获得积分10
1分钟前
aa121599完成签到,获得积分20
1分钟前
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
朴素绿蝶发布了新的文献求助10
2分钟前
痴痴的噜完成签到,获得积分10
2分钟前
江姜酱先生完成签到,获得积分10
2分钟前
搞科研的小李同学完成签到 ,获得积分10
2分钟前
科研通AI6应助朴素绿蝶采纳,获得10
2分钟前
可爱的函函应助hulahula采纳,获得10
2分钟前
fabius0351完成签到 ,获得积分10
2分钟前
李健应助阿米尔盼盼采纳,获得10
2分钟前
2分钟前
hulahula发布了新的文献求助10
2分钟前
2分钟前
3分钟前
长度2到发布了新的文献求助10
3分钟前
xuan发布了新的文献求助10
3分钟前
长度2到完成签到,获得积分10
3分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220819
求助须知:如何正确求助?哪些是违规求助? 4394077
关于积分的说明 13680135
捐赠科研通 4257061
什么是DOI,文献DOI怎么找? 2335959
邀请新用户注册赠送积分活动 1333553
关于科研通互助平台的介绍 1287992