已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Blockchain-Based Interpretable Electric Vehicle Battery Life Prediction in IoV

可解释性 计算机科学 稳健性(进化) 工作流程 人工智能 机器学习 电池(电) 数据挖掘 特征提取 数据库 生物化学 化学 基因 功率(物理) 物理 量子力学
作者
Siyan Liu,Chang Wu,Jiaxin Huang,Ying Zhang,Ming Ye,Yuhang Huang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 7214-7227 被引量:3
标识
DOI:10.1109/jiot.2023.3315483
摘要

The remarkable success of deep learning (DL) in predicting battery health has prompted interest in its application in recent years. While state-of-the-art DL models have achieved high accuracy in battery health prediction, they have not been widely adopted in industrial workflows, primarily due to their lack of interpretability and security. To address this issue, we propose a blockchain-based interpretable prediction algorithm for battery health prediction in electric vehicles (EVs) within the Internet of Vehicles (IoV). Specifically, the proposed method includes a platform architecture for a blockchain-based DL system, ensuring secure storage of user data during the prediction process. Notably, we develop a novel battery life prediction algorithm called BLP-Transformer, which leverages short-term relationships between degraded data and explains the impact of feature extraction on predicted results through the contribution of aggregated features based on a feature focusing mechanism. Experimental results demonstrate that the system is feasible for security and can provide accurate battery life prediction. In addition, the comparison study further highlights the superiority of the proposed algorithm in terms of robustness, prediction accuracy, and model interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
赵乂完成签到,获得积分10
2秒前
SciGPT应助Dasiliy采纳,获得10
3秒前
十号信封完成签到,获得积分10
3秒前
3秒前
3秒前
5秒前
今后应助我亦化身东海去采纳,获得10
5秒前
6秒前
coster发布了新的文献求助10
7秒前
lee0708发布了新的文献求助10
7秒前
森森森发布了新的文献求助10
8秒前
10秒前
11秒前
12秒前
杰杰大叔发布了新的文献求助20
12秒前
飞奔小子发布了新的文献求助10
12秒前
小米粥发布了新的文献求助10
12秒前
MMX发布了新的文献求助10
15秒前
coster完成签到,获得积分10
15秒前
16秒前
泪是雨的旋律关注了科研通微信公众号
16秒前
lcj1014发布了新的文献求助10
17秒前
虚拟的冰双完成签到,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
Alex应助科研通管家采纳,获得20
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
ZhaohuaXie应助科研通管家采纳,获得20
22秒前
大个应助科研通管家采纳,获得10
22秒前
23秒前
24秒前
封印完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934725
求助须知:如何正确求助?哪些是违规求助? 4202490
关于积分的说明 13057604
捐赠科研通 3976864
什么是DOI,文献DOI怎么找? 2179284
邀请新用户注册赠送积分活动 1195452
关于科研通互助平台的介绍 1106840