Blockchain-Based Interpretable Electric Vehicle Battery Life Prediction in IoV

可解释性 计算机科学 稳健性(进化) 工作流程 人工智能 机器学习 电池(电) 数据挖掘 特征提取 数据库 生物化学 化学 基因 功率(物理) 物理 量子力学
作者
Siyan Liu,Chang Wu,Jiaxin Huang,Ying Zhang,Ming Ye,Yuhang Huang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 7214-7227 被引量:3
标识
DOI:10.1109/jiot.2023.3315483
摘要

The remarkable success of deep learning (DL) in predicting battery health has prompted interest in its application in recent years. While state-of-the-art DL models have achieved high accuracy in battery health prediction, they have not been widely adopted in industrial workflows, primarily due to their lack of interpretability and security. To address this issue, we propose a blockchain-based interpretable prediction algorithm for battery health prediction in electric vehicles (EVs) within the Internet of Vehicles (IoV). Specifically, the proposed method includes a platform architecture for a blockchain-based DL system, ensuring secure storage of user data during the prediction process. Notably, we develop a novel battery life prediction algorithm called BLP-Transformer, which leverages short-term relationships between degraded data and explains the impact of feature extraction on predicted results through the contribution of aggregated features based on a feature focusing mechanism. Experimental results demonstrate that the system is feasible for security and can provide accurate battery life prediction. In addition, the comparison study further highlights the superiority of the proposed algorithm in terms of robustness, prediction accuracy, and model interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的安南完成签到 ,获得积分10
1秒前
ikiii发布了新的文献求助10
1秒前
善学以致用应助飲啖茶采纳,获得200
1秒前
2秒前
3秒前
3秒前
小蘑菇应助俏皮的夜山采纳,获得20
4秒前
7秒前
8秒前
8秒前
Jasper应助划水的鱼采纳,获得10
8秒前
9秒前
可爱的函函应助一一采纳,获得10
10秒前
无极微光应助包容的以彤采纳,获得20
11秒前
棋子发布了新的文献求助10
11秒前
chenjian发布了新的文献求助10
11秒前
12秒前
lmz发布了新的文献求助10
13秒前
老福贵儿应助吧唧吧唧采纳,获得10
15秒前
ywd发布了新的文献求助10
15秒前
赫连涵柏完成签到,获得积分0
17秒前
彭于晏应助忧郁的平安采纳,获得10
18秒前
19秒前
玛斯特尔完成签到,获得积分10
23秒前
25秒前
27秒前
Karolings发布了新的文献求助10
27秒前
冯雅婷完成签到 ,获得积分20
28秒前
冬虫夏草完成签到,获得积分10
29秒前
jenningseastera应助123456采纳,获得30
30秒前
30秒前
32秒前
32秒前
SciGPT应助LYP采纳,获得10
32秒前
叮咚发布了新的文献求助10
34秒前
34秒前
我是老大应助棋子采纳,获得10
34秒前
35秒前
领导范儿应助文艺的元容采纳,获得10
37秒前
芒果完成签到 ,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601874
求助须知:如何正确求助?哪些是违规求助? 4687221
关于积分的说明 14848027
捐赠科研通 4682133
什么是DOI,文献DOI怎么找? 2539575
邀请新用户注册赠送积分活动 1506378
关于科研通互助平台的介绍 1471340