Can multi-modal radiomics using pretreatment ultrasound and tomosynthesis predict response to neoadjuvant systemic treatment in breast cancer?

医学 层析合成 超声波 乳腺癌 放射科 无线电技术 癌症 内科学 乳腺摄影术
作者
Lie Cai,Chris Sidey‐Gibbons,Juliane Nees,Fabian Riedel,Benedikt Schäfgen,Riku Togawa,Kristina Killinger,Joerg Heil,André Pfob,Michael Golatta
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (4): 2560-2573 被引量:6
标识
DOI:10.1007/s00330-023-10238-6
摘要

Abstract Objectives Response assessment to neoadjuvant systemic treatment (NAST) to guide individualized treatment in breast cancer is a clinical research priority. We aimed to develop an intelligent algorithm using multi-modal pretreatment ultrasound and tomosynthesis radiomics features in addition to clinical variables to predict pathologic complete response (pCR) prior to the initiation of therapy. Methods We used retrospective data on patients who underwent ultrasound and tomosynthesis before starting NAST. We developed a support vector machine algorithm using pretreatment ultrasound and tomosynthesis radiomics features in addition to patient and tumor variables to predict pCR status (ypT0 and ypN0). Findings were compared to the histopathologic evaluation of the surgical specimen. The main outcome measures were area under the curve (AUC) and false-negative rate (FNR). Results We included 720 patients, 504 in the development set and 216 in the validation set. Median age was 51.6 years and 33.6% (242 of 720) achieved pCR. The addition of radiomics features significantly improved the performance of the algorithm (AUC 0.72 to 0.81; p = 0.007). The FNR of the multi-modal radiomics and clinical algorithm was 6.7% (10 of 150 with missed residual cancer). Surface/volume ratio at tomosynthesis and peritumoral entropy characteristics at ultrasound were the most relevant radiomics. Hormonal receptors and HER-2 status were the most important clinical predictors. Conclusion A multi-modal machine learning algorithm with pretreatment clinical, ultrasound, and tomosynthesis radiomics features may aid in predicting residual cancer after NAST. Pending prospective validation, this may facilitate individually tailored NAST regimens. Clinical relevance statement Multi-modal radiomics using pretreatment ultrasound and tomosynthesis showed significant improvement in assessing response to NAST compared to an algorithm using clinical variables only. Further prospective validation of our findings seems warranted to enable individualized predictions of NAST outcomes. Key Points • We proposed a multi-modal machine learning algorithm with pretreatment clinical, ultrasound, and tomosynthesis radiomics features to predict response to neoadjuvant breast cancer treatment . • Compared with the clinical algorithm, the AUC of this integrative algorithm is significantly higher . • Used prior to the initiative of therapy, our algorithm can identify patients who will experience pathologic complete response following neoadjuvant therapy with a high negative predictive value .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ShiRz发布了新的文献求助10
2秒前
叶黄戍发布了新的文献求助10
2秒前
传奇3应助平平幻灵采纳,获得10
3秒前
黄油屑屑发布了新的文献求助10
3秒前
3秒前
4秒前
kuroadsaas完成签到,获得积分10
4秒前
万能图书馆应助momo采纳,获得10
5秒前
Luna发布了新的文献求助10
5秒前
5秒前
hao发布了新的文献求助10
6秒前
bosco发布了新的文献求助10
8秒前
万能图书馆应助CCY采纳,获得10
9秒前
科研小将完成签到,获得积分10
10秒前
12秒前
Ava应助Ashley采纳,获得10
13秒前
14秒前
14秒前
14秒前
14秒前
田様应助Xiaoyan采纳,获得10
14秒前
所所应助youyou糍粑采纳,获得10
15秒前
15秒前
昵称吧发布了新的文献求助20
17秒前
jzy发布了新的文献求助10
17秒前
脑洞疼应助日天的马铃薯采纳,获得10
17秒前
18秒前
上官若男应助单薄的浩阑采纳,获得10
19秒前
炎星语发布了新的文献求助10
19秒前
晓慕完成签到 ,获得积分10
19秒前
20秒前
xxxx完成签到 ,获得积分10
20秒前
20秒前
CipherSage应助大帅采纳,获得10
21秒前
小蘑菇应助否认冶游史采纳,获得10
21秒前
21秒前
21秒前
黄油屑屑发布了新的文献求助10
23秒前
23秒前
蔡从安发布了新的文献求助10
24秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3412516
求助须知:如何正确求助?哪些是违规求助? 3015217
关于积分的说明 8869123
捐赠科研通 2702867
什么是DOI,文献DOI怎么找? 1481929
科研通“疑难数据库(出版商)”最低求助积分说明 685086
邀请新用户注册赠送积分活动 679733