A Deep Convolutional Neural Network-Based Method for Self-Piercing Rivet Joint Defect Detection

铆钉 卷积(计算机科学) 卷积神经网络 人工智能 特征(语言学) 计算机科学 接头(建筑物) 过程(计算) 深度学习 干扰(通信) 计算机视觉 工程类 模式识别(心理学) 人工神经网络 结构工程 语言学 操作系统 频道(广播) 哲学 计算机网络
作者
Lun Zhao,Sen Lin,Yunlong Pan,Haibo Wang,Zeshan Abbas,ZiXin Guo,Xiaole Huo,Sen Wang
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (4) 被引量:5
标识
DOI:10.1115/1.4063748
摘要

Abstract The self-pierce riveting process for alloy materials has a wide range of applications in the automotive manufacturing industry. This will not only affect the operation performance but also cause accidents in severe cases when there are defects in the riveted parts. A deep learning detection model is proposed that integrates atrous convolution and dynamic convolution to identify defects of self-piercing riveting parts efficiently to overcome the problem in quality inspection after the body self-piercing riveting process. First, a backbone network for extracting riveting defect features is constructed based on the ResNet network. Second, the center area of each riveting defect is located preferentially by the center point detection algorithm. Finally, the bounding box of riveting defects is regressed to achieve defect detection based on this central region. Among them, atrous convolution is used in the external network to increase the receptive field of the model, which combined with an active convolution so that a dynamic atrous convolution module is designed. This module is used to enhance the correlation between feature points of individual pixel in the image, which helps to identify defects with incomplete image edges and suppress background interference. Ablation experiments show that the proposed method achieves the highest accuracy of 96.3%, which is 3.9% higher than the original method. It is found that the proposed method is less affected by the background interference from the qualitative comparison. Moreover, it can also effectively identify the riveting defects on the surface of each area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YEGE完成签到 ,获得积分10
刚刚
1秒前
2秒前
英姑应助细心谷蓝采纳,获得10
2秒前
Nothing完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Geass发布了新的文献求助10
8秒前
Akim应助搞怪的寄灵采纳,获得10
8秒前
小明发布了新的文献求助10
8秒前
杨洋发布了新的文献求助10
8秒前
科研通AI6应助怡然之云采纳,获得10
13秒前
BORN关注了科研通微信公众号
14秒前
悲伤西米露完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
Passskd发布了新的文献求助10
17秒前
推土机爱学习完成签到 ,获得积分10
17秒前
susan完成签到,获得积分10
18秒前
香蕉觅云应助天才玩家采纳,获得10
21秒前
shihun发布了新的文献求助10
21秒前
交交阿鱼完成签到,获得积分10
22秒前
望舒完成签到,获得积分10
23秒前
潮平两岸阔完成签到,获得积分10
23秒前
活泼醉冬完成签到,获得积分10
23秒前
24秒前
tartyang完成签到 ,获得积分10
26秒前
杨洋完成签到,获得积分10
26秒前
情怀应助gzk采纳,获得10
27秒前
saluo发布了新的文献求助10
28秒前
我是老大应助淡淡采纳,获得10
30秒前
糖豆子完成签到,获得积分10
32秒前
LHT完成签到,获得积分10
32秒前
刘一帆发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
33秒前
李健的小迷弟应助z620采纳,获得10
35秒前
35秒前
zhang03完成签到 ,获得积分10
36秒前
小明完成签到,获得积分10
36秒前
Ander完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679587
求助须知:如何正确求助?哪些是违规求助? 4991903
关于积分的说明 15170108
捐赠科研通 4839414
什么是DOI,文献DOI怎么找? 2593318
邀请新用户注册赠送积分活动 1546447
关于科研通互助平台的介绍 1504572