A Deep Convolutional Neural Network-Based Method for Self-Piercing Rivet Joint Defect Detection

铆钉 卷积(计算机科学) 卷积神经网络 人工智能 特征(语言学) 计算机科学 接头(建筑物) 过程(计算) 深度学习 干扰(通信) 计算机视觉 工程类 模式识别(心理学) 人工神经网络 结构工程 语言学 哲学 频道(广播) 操作系统 计算机网络
作者
Lun Zhao,Sen Lin,Yunlong Pan,Haibo Wang,Zeshan Abbas,ZiXin Guo,Xiaole Huo,Sen Wang
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (4) 被引量:5
标识
DOI:10.1115/1.4063748
摘要

Abstract The self-pierce riveting process for alloy materials has a wide range of applications in the automotive manufacturing industry. This will not only affect the operation performance but also cause accidents in severe cases when there are defects in the riveted parts. A deep learning detection model is proposed that integrates atrous convolution and dynamic convolution to identify defects of self-piercing riveting parts efficiently to overcome the problem in quality inspection after the body self-piercing riveting process. First, a backbone network for extracting riveting defect features is constructed based on the ResNet network. Second, the center area of each riveting defect is located preferentially by the center point detection algorithm. Finally, the bounding box of riveting defects is regressed to achieve defect detection based on this central region. Among them, atrous convolution is used in the external network to increase the receptive field of the model, which combined with an active convolution so that a dynamic atrous convolution module is designed. This module is used to enhance the correlation between feature points of individual pixel in the image, which helps to identify defects with incomplete image edges and suppress background interference. Ablation experiments show that the proposed method achieves the highest accuracy of 96.3%, which is 3.9% higher than the original method. It is found that the proposed method is less affected by the background interference from the qualitative comparison. Moreover, it can also effectively identify the riveting defects on the surface of each area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
congjia完成签到,获得积分10
刚刚
1秒前
2秒前
十一完成签到,获得积分10
3秒前
4秒前
迷路的尔丝完成签到,获得积分10
4秒前
光亮千易完成签到,获得积分10
5秒前
6秒前
阿氏之光完成签到,获得积分10
6秒前
maomao完成签到 ,获得积分10
6秒前
小心薛了你完成签到,获得积分10
6秒前
10秒前
sun完成签到 ,获得积分10
11秒前
12秒前
wheat完成签到,获得积分10
14秒前
雪飞杨完成签到 ,获得积分10
14秒前
14秒前
yanjiuhuzu完成签到,获得积分10
15秒前
LIU完成签到,获得积分10
16秒前
xieyy6完成签到 ,获得积分10
18秒前
自由的雅容完成签到,获得积分10
19秒前
壮观的晓瑶完成签到 ,获得积分10
19秒前
活泼蜡烛完成签到,获得积分10
23秒前
动听的囧完成签到,获得积分10
24秒前
25秒前
温暖的问候完成签到,获得积分10
25秒前
菠萝水手完成签到,获得积分10
28秒前
XUEWENQIN关注了科研通微信公众号
29秒前
收集快乐完成签到 ,获得积分10
29秒前
caca完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
bkagyin应助酷炫的灵阳采纳,获得10
30秒前
务实的绝悟完成签到,获得积分10
32秒前
林早上完成签到,获得积分10
32秒前
郭浩峰完成签到,获得积分10
32秒前
Lotus完成签到,获得积分10
33秒前
li完成签到,获得积分10
34秒前
倩倩完成签到 ,获得积分10
37秒前
weerfi完成签到,获得积分10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539314
求助须知:如何正确求助?哪些是违规求助? 4626076
关于积分的说明 14597627
捐赠科研通 4566895
什么是DOI,文献DOI怎么找? 2503687
邀请新用户注册赠送积分活动 1481599
关于科研通互助平台的介绍 1453173