A Deep Convolutional Neural Network-Based Method for Self-Piercing Rivet Joint Defect Detection

铆钉 卷积(计算机科学) 卷积神经网络 人工智能 特征(语言学) 计算机科学 接头(建筑物) 过程(计算) 深度学习 干扰(通信) 计算机视觉 工程类 模式识别(心理学) 人工神经网络 结构工程 语言学 哲学 频道(广播) 操作系统 计算机网络
作者
Lun Zhao,Sen Lin,Yunlong Pan,Haibo Wang,Zeshan Abbas,ZiXin Guo,Xiaole Huo,Sen Wang
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (4) 被引量:5
标识
DOI:10.1115/1.4063748
摘要

Abstract The self-pierce riveting process for alloy materials has a wide range of applications in the automotive manufacturing industry. This will not only affect the operation performance but also cause accidents in severe cases when there are defects in the riveted parts. A deep learning detection model is proposed that integrates atrous convolution and dynamic convolution to identify defects of self-piercing riveting parts efficiently to overcome the problem in quality inspection after the body self-piercing riveting process. First, a backbone network for extracting riveting defect features is constructed based on the ResNet network. Second, the center area of each riveting defect is located preferentially by the center point detection algorithm. Finally, the bounding box of riveting defects is regressed to achieve defect detection based on this central region. Among them, atrous convolution is used in the external network to increase the receptive field of the model, which combined with an active convolution so that a dynamic atrous convolution module is designed. This module is used to enhance the correlation between feature points of individual pixel in the image, which helps to identify defects with incomplete image edges and suppress background interference. Ablation experiments show that the proposed method achieves the highest accuracy of 96.3%, which is 3.9% higher than the original method. It is found that the proposed method is less affected by the background interference from the qualitative comparison. Moreover, it can also effectively identify the riveting defects on the surface of each area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助奋斗的采蓝采纳,获得10
1秒前
1秒前
shawn完成签到 ,获得积分10
1秒前
wwy应助iiianchen采纳,获得10
1秒前
Nine完成签到 ,获得积分10
2秒前
2秒前
SpONGeBOb完成签到 ,获得积分10
2秒前
默默的天德完成签到,获得积分10
3秒前
3秒前
4秒前
朱孟研应助可靠的香魔采纳,获得10
5秒前
11发布了新的文献求助10
6秒前
向钱看完成签到 ,获得积分20
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
科研通AI6应助哈哈采纳,获得10
6秒前
7秒前
7秒前
7秒前
完美世界应助忘崽小油条采纳,获得10
8秒前
chall完成签到,获得积分10
9秒前
9秒前
扫沃特发布了新的文献求助10
10秒前
麻辣香香完成签到,获得积分10
10秒前
上官若男应助万坤采纳,获得10
10秒前
11秒前
Orange应助jingguofu采纳,获得10
12秒前
xinghe123发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
Maston完成签到,获得积分10
13秒前
muyu完成签到,获得积分10
13秒前
善良的豆芽完成签到,获得积分10
14秒前
14秒前
青争发布了新的文献求助10
14秒前
14秒前
霜降发布了新的文献求助10
15秒前
粗心的从露完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707