A Deep Convolutional Neural Network-Based Method for Self-Piercing Rivet Joint Defect Detection

铆钉 卷积(计算机科学) 卷积神经网络 人工智能 特征(语言学) 计算机科学 接头(建筑物) 过程(计算) 深度学习 干扰(通信) 计算机视觉 工程类 模式识别(心理学) 人工神经网络 结构工程 语言学 哲学 频道(广播) 操作系统 计算机网络
作者
Lun Zhao,Sen Lin,Yunlong Pan,Haibo Wang,Zeshan Abbas,ZiXin Guo,Xiaole Huo,Sen Wang
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (4) 被引量:5
标识
DOI:10.1115/1.4063748
摘要

Abstract The self-pierce riveting process for alloy materials has a wide range of applications in the automotive manufacturing industry. This will not only affect the operation performance but also cause accidents in severe cases when there are defects in the riveted parts. A deep learning detection model is proposed that integrates atrous convolution and dynamic convolution to identify defects of self-piercing riveting parts efficiently to overcome the problem in quality inspection after the body self-piercing riveting process. First, a backbone network for extracting riveting defect features is constructed based on the ResNet network. Second, the center area of each riveting defect is located preferentially by the center point detection algorithm. Finally, the bounding box of riveting defects is regressed to achieve defect detection based on this central region. Among them, atrous convolution is used in the external network to increase the receptive field of the model, which combined with an active convolution so that a dynamic atrous convolution module is designed. This module is used to enhance the correlation between feature points of individual pixel in the image, which helps to identify defects with incomplete image edges and suppress background interference. Ablation experiments show that the proposed method achieves the highest accuracy of 96.3%, which is 3.9% higher than the original method. It is found that the proposed method is less affected by the background interference from the qualitative comparison. Moreover, it can also effectively identify the riveting defects on the surface of each area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
littlewhite关注了科研通微信公众号
1秒前
1秒前
零点起步完成签到,获得积分10
1秒前
慕青应助大力的含卉采纳,获得10
1秒前
善良过客发布了新的文献求助10
2秒前
2秒前
2秒前
dildil发布了新的文献求助10
2秒前
2秒前
hu970发布了新的文献求助10
3秒前
3秒前
王思鲁发布了新的文献求助30
3秒前
七个小矮人完成签到,获得积分10
4秒前
Aria完成签到,获得积分10
4秒前
感性的安露应助结实雪卉采纳,获得20
5秒前
零点起步发布了新的文献求助10
6秒前
故意的傲玉应助Ll采纳,获得10
6秒前
斯文败类应助xiuxiu_27采纳,获得10
6秒前
胖子完成签到,获得积分10
6秒前
王巧巧完成签到,获得积分10
6秒前
tangsuyun发布了新的文献求助10
7秒前
祝顺遂发布了新的文献求助10
7秒前
Seven发布了新的文献求助10
7秒前
土拨鼠完成签到 ,获得积分10
8秒前
邢夏之发布了新的文献求助10
8秒前
漂亮芹菜完成签到,获得积分10
8秒前
ZXH完成签到,获得积分10
8秒前
Evelyn完成签到 ,获得积分10
8秒前
习习应助sb采纳,获得10
9秒前
9秒前
9秒前
斯文败类应助liu采纳,获得10
10秒前
10秒前
gy发布了新的文献求助10
10秒前
12秒前
pinging应助566采纳,获得10
12秒前
乾明少侠完成签到 ,获得积分10
13秒前
13秒前
开心重要完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759