A Deep Convolutional Neural Network-Based Method for Self-Piercing Rivet Joint Defect Detection

铆钉 卷积(计算机科学) 卷积神经网络 人工智能 特征(语言学) 计算机科学 接头(建筑物) 过程(计算) 深度学习 干扰(通信) 计算机视觉 工程类 模式识别(心理学) 人工神经网络 结构工程 语言学 哲学 频道(广播) 操作系统 计算机网络
作者
Lun Zhao,Sen Lin,Yunlong Pan,Haibo Wang,Zeshan Abbas,ZiXin Guo,Xiaole Huo,Sen Wang
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (4) 被引量:5
标识
DOI:10.1115/1.4063748
摘要

Abstract The self-pierce riveting process for alloy materials has a wide range of applications in the automotive manufacturing industry. This will not only affect the operation performance but also cause accidents in severe cases when there are defects in the riveted parts. A deep learning detection model is proposed that integrates atrous convolution and dynamic convolution to identify defects of self-piercing riveting parts efficiently to overcome the problem in quality inspection after the body self-piercing riveting process. First, a backbone network for extracting riveting defect features is constructed based on the ResNet network. Second, the center area of each riveting defect is located preferentially by the center point detection algorithm. Finally, the bounding box of riveting defects is regressed to achieve defect detection based on this central region. Among them, atrous convolution is used in the external network to increase the receptive field of the model, which combined with an active convolution so that a dynamic atrous convolution module is designed. This module is used to enhance the correlation between feature points of individual pixel in the image, which helps to identify defects with incomplete image edges and suppress background interference. Ablation experiments show that the proposed method achieves the highest accuracy of 96.3%, which is 3.9% higher than the original method. It is found that the proposed method is less affected by the background interference from the qualitative comparison. Moreover, it can also effectively identify the riveting defects on the surface of each area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
顺心的芝麻完成签到 ,获得积分10
2秒前
Dharma_Bums发布了新的文献求助10
3秒前
科研通AI2S应助ironsilica采纳,获得10
4秒前
4秒前
SSY完成签到,获得积分10
5秒前
LongHua发布了新的文献求助10
9秒前
缪道之完成签到 ,获得积分10
9秒前
10秒前
木偶完成签到,获得积分10
10秒前
小猫完成签到 ,获得积分10
10秒前
huayi完成签到,获得积分10
12秒前
典雅胜发布了新的文献求助10
13秒前
姚怜南完成签到,获得积分10
13秒前
Norah完成签到,获得积分10
14秒前
14秒前
饱满的毛巾完成签到,获得积分10
15秒前
玖月完成签到 ,获得积分0
16秒前
16秒前
17秒前
潇潇完成签到,获得积分10
18秒前
pluto完成签到,获得积分0
18秒前
20秒前
支雨泽发布了新的文献求助10
21秒前
烟花应助TulIP采纳,获得10
22秒前
辛勤的小熊猫完成签到,获得积分10
22秒前
粥粥粥完成签到,获得积分20
23秒前
queer完成签到,获得积分10
23秒前
天行马完成签到,获得积分10
23秒前
juphen2发布了新的文献求助10
24秒前
芜湖起飞完成签到 ,获得积分10
25秒前
wang完成签到,获得积分10
26秒前
26秒前
zhangj696完成签到,获得积分10
27秒前
Xavier完成签到,获得积分10
28秒前
洁净的黑米完成签到,获得积分10
29秒前
圈圈应助科研通管家采纳,获得10
29秒前
xz应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603579
求助须知:如何正确求助?哪些是违规求助? 4688574
关于积分的说明 14854759
捐赠科研通 4693983
什么是DOI,文献DOI怎么找? 2540888
邀请新用户注册赠送积分活动 1507108
关于科研通互助平台的介绍 1471806