A Deep Convolutional Neural Network-Based Method for Self-Piercing Rivet Joint Defect Detection

铆钉 卷积(计算机科学) 卷积神经网络 人工智能 特征(语言学) 计算机科学 接头(建筑物) 过程(计算) 深度学习 干扰(通信) 计算机视觉 工程类 模式识别(心理学) 人工神经网络 结构工程 语言学 哲学 频道(广播) 操作系统 计算机网络
作者
Lun Zhao,Sen Lin,Yunlong Pan,Haibo Wang,Zeshan Abbas,ZiXin Guo,Xiaole Huo,Sen Wang
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (4) 被引量:5
标识
DOI:10.1115/1.4063748
摘要

Abstract The self-pierce riveting process for alloy materials has a wide range of applications in the automotive manufacturing industry. This will not only affect the operation performance but also cause accidents in severe cases when there are defects in the riveted parts. A deep learning detection model is proposed that integrates atrous convolution and dynamic convolution to identify defects of self-piercing riveting parts efficiently to overcome the problem in quality inspection after the body self-piercing riveting process. First, a backbone network for extracting riveting defect features is constructed based on the ResNet network. Second, the center area of each riveting defect is located preferentially by the center point detection algorithm. Finally, the bounding box of riveting defects is regressed to achieve defect detection based on this central region. Among them, atrous convolution is used in the external network to increase the receptive field of the model, which combined with an active convolution so that a dynamic atrous convolution module is designed. This module is used to enhance the correlation between feature points of individual pixel in the image, which helps to identify defects with incomplete image edges and suppress background interference. Ablation experiments show that the proposed method achieves the highest accuracy of 96.3%, which is 3.9% higher than the original method. It is found that the proposed method is less affected by the background interference from the qualitative comparison. Moreover, it can also effectively identify the riveting defects on the surface of each area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的如豹完成签到,获得积分10
刚刚
刚刚
共享精神应助粗暴的嫣娆采纳,获得10
刚刚
Wind应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
繁星长明应助科研通管家采纳,获得10
2秒前
magiczhu完成签到,获得积分10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
Wind应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得20
3秒前
田様应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
ljyimu发布了新的文献求助10
3秒前
李栗子完成签到,获得积分10
4秒前
李健应助宫年采纳,获得10
4秒前
科研通AI6应助感谢采纳,获得10
4秒前
4秒前
可爱的函函应助111111采纳,获得10
6秒前
Astoria完成签到,获得积分10
6秒前
Akim应助卷卷更快乐采纳,获得10
6秒前
李健的小迷弟应助含羞草采纳,获得10
6秒前
yang完成签到,获得积分20
7秒前
酷波er应助歪比巴卜采纳,获得10
8秒前
hejinyin完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
11秒前
13秒前
lulu发布了新的文献求助10
13秒前
搜集达人应助drchen采纳,获得10
13秒前
Orange应助裹被仔采纳,获得10
13秒前
元谷雪应助song采纳,获得10
14秒前
科研通AI6应助鸡狗不如采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578642
求助须知:如何正确求助?哪些是违规求助? 4663442
关于积分的说明 14746667
捐赠科研通 4604316
什么是DOI,文献DOI怎么找? 2526915
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465795