A Deep Convolutional Neural Network-Based Method for Self-Piercing Rivet Joint Defect Detection

铆钉 卷积(计算机科学) 卷积神经网络 人工智能 特征(语言学) 计算机科学 接头(建筑物) 过程(计算) 深度学习 干扰(通信) 计算机视觉 工程类 模式识别(心理学) 人工神经网络 结构工程 语言学 哲学 频道(广播) 操作系统 计算机网络
作者
Lun Zhao,Sen Lin,Yunlong Pan,Haibo Wang,Zeshan Abbas,ZiXin Guo,Xiaole Huo,Sen Wang
出处
期刊:Journal of Computing and Information Science in Engineering [ASM International]
卷期号:24 (4) 被引量:5
标识
DOI:10.1115/1.4063748
摘要

Abstract The self-pierce riveting process for alloy materials has a wide range of applications in the automotive manufacturing industry. This will not only affect the operation performance but also cause accidents in severe cases when there are defects in the riveted parts. A deep learning detection model is proposed that integrates atrous convolution and dynamic convolution to identify defects of self-piercing riveting parts efficiently to overcome the problem in quality inspection after the body self-piercing riveting process. First, a backbone network for extracting riveting defect features is constructed based on the ResNet network. Second, the center area of each riveting defect is located preferentially by the center point detection algorithm. Finally, the bounding box of riveting defects is regressed to achieve defect detection based on this central region. Among them, atrous convolution is used in the external network to increase the receptive field of the model, which combined with an active convolution so that a dynamic atrous convolution module is designed. This module is used to enhance the correlation between feature points of individual pixel in the image, which helps to identify defects with incomplete image edges and suppress background interference. Ablation experiments show that the proposed method achieves the highest accuracy of 96.3%, which is 3.9% higher than the original method. It is found that the proposed method is less affected by the background interference from the qualitative comparison. Moreover, it can also effectively identify the riveting defects on the surface of each area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
每天都困发布了新的文献求助10
刚刚
刚刚
sonia完成签到,获得积分10
刚刚
和谐谷蕊发布了新的文献求助10
刚刚
1秒前
1秒前
蜜桃四季春完成签到,获得积分10
1秒前
Miki完成签到,获得积分10
1秒前
追寻扬发布了新的文献求助10
1秒前
CipherSage应助tcw1230采纳,获得10
1秒前
比奇堡完成签到,获得积分10
2秒前
thurman完成签到,获得积分10
2秒前
Cruffin完成签到 ,获得积分10
3秒前
3秒前
li完成签到,获得积分10
3秒前
疯狂的向日葵完成签到,获得积分10
3秒前
科研通AI2S应助kingsley05采纳,获得10
3秒前
安详的甜瓜完成签到,获得积分10
3秒前
4秒前
4秒前
张斯瑞发布了新的文献求助10
4秒前
4秒前
Rubby应助董宝采纳,获得50
5秒前
5秒前
pearlsun完成签到,获得积分10
5秒前
5秒前
5秒前
Iam菜鸟完成签到 ,获得积分10
5秒前
我是老大应助光亮的绮晴采纳,获得10
5秒前
步步完成签到 ,获得积分10
6秒前
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得30
6秒前
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
所所应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5151967
求助须知:如何正确求助?哪些是违规求助? 4347586
关于积分的说明 13537453
捐赠科研通 4190264
什么是DOI,文献DOI怎么找? 2298014
邀请新用户注册赠送积分活动 1298303
关于科研通互助平台的介绍 1243075