亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Convolutional Neural Network-Based Method for Self-Piercing Rivet Joint Defect Detection

铆钉 卷积(计算机科学) 卷积神经网络 人工智能 特征(语言学) 计算机科学 接头(建筑物) 过程(计算) 深度学习 干扰(通信) 计算机视觉 工程类 模式识别(心理学) 人工神经网络 结构工程 语言学 哲学 频道(广播) 操作系统 计算机网络
作者
Lun Zhao,Sen Lin,Yunlong Pan,Haibo Wang,Zeshan Abbas,ZiXin Guo,Xiaole Huo,Sen Wang
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (4) 被引量:5
标识
DOI:10.1115/1.4063748
摘要

Abstract The self-pierce riveting process for alloy materials has a wide range of applications in the automotive manufacturing industry. This will not only affect the operation performance but also cause accidents in severe cases when there are defects in the riveted parts. A deep learning detection model is proposed that integrates atrous convolution and dynamic convolution to identify defects of self-piercing riveting parts efficiently to overcome the problem in quality inspection after the body self-piercing riveting process. First, a backbone network for extracting riveting defect features is constructed based on the ResNet network. Second, the center area of each riveting defect is located preferentially by the center point detection algorithm. Finally, the bounding box of riveting defects is regressed to achieve defect detection based on this central region. Among them, atrous convolution is used in the external network to increase the receptive field of the model, which combined with an active convolution so that a dynamic atrous convolution module is designed. This module is used to enhance the correlation between feature points of individual pixel in the image, which helps to identify defects with incomplete image edges and suppress background interference. Ablation experiments show that the proposed method achieves the highest accuracy of 96.3%, which is 3.9% higher than the original method. It is found that the proposed method is less affected by the background interference from the qualitative comparison. Moreover, it can also effectively identify the riveting defects on the surface of each area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
6秒前
7秒前
orhunturker发布了新的文献求助10
7秒前
10秒前
XXXX发布了新的文献求助10
13秒前
huangzsdy完成签到,获得积分10
22秒前
42秒前
Jasper应助xiaoer采纳,获得10
43秒前
47秒前
CCC完成签到 ,获得积分10
50秒前
58秒前
xiaoer发布了新的文献求助10
1分钟前
Polymer72应助激情的从雪采纳,获得10
1分钟前
1分钟前
janejane发布了新的文献求助10
1分钟前
janejane完成签到 ,获得积分20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
Polymer72完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助开朗纸飞机采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
习月阳完成签到,获得积分10
4分钟前
4分钟前
Ethan发布了新的文献求助10
4分钟前
5分钟前
Raunio完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
6分钟前
6分钟前
清净126完成签到 ,获得积分10
6分钟前
souther完成签到,获得积分0
6分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338955
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627845
捐赠科研通 2646431
什么是DOI,文献DOI怎么找? 1449171
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660162