A Deep Convolutional Neural Network-Based Method for Self-Piercing Rivet Joint Defect Detection

铆钉 卷积(计算机科学) 卷积神经网络 人工智能 特征(语言学) 计算机科学 接头(建筑物) 过程(计算) 深度学习 干扰(通信) 计算机视觉 工程类 模式识别(心理学) 人工神经网络 结构工程 语言学 哲学 频道(广播) 操作系统 计算机网络
作者
Lun Zhao,Sen Lin,Yunlong Pan,Haibo Wang,Zeshan Abbas,ZiXin Guo,Xiaole Huo,Sen Wang
出处
期刊:Journal of Computing and Information Science in Engineering [ASM International]
卷期号:24 (4) 被引量:5
标识
DOI:10.1115/1.4063748
摘要

Abstract The self-pierce riveting process for alloy materials has a wide range of applications in the automotive manufacturing industry. This will not only affect the operation performance but also cause accidents in severe cases when there are defects in the riveted parts. A deep learning detection model is proposed that integrates atrous convolution and dynamic convolution to identify defects of self-piercing riveting parts efficiently to overcome the problem in quality inspection after the body self-piercing riveting process. First, a backbone network for extracting riveting defect features is constructed based on the ResNet network. Second, the center area of each riveting defect is located preferentially by the center point detection algorithm. Finally, the bounding box of riveting defects is regressed to achieve defect detection based on this central region. Among them, atrous convolution is used in the external network to increase the receptive field of the model, which combined with an active convolution so that a dynamic atrous convolution module is designed. This module is used to enhance the correlation between feature points of individual pixel in the image, which helps to identify defects with incomplete image edges and suppress background interference. Ablation experiments show that the proposed method achieves the highest accuracy of 96.3%, which is 3.9% higher than the original method. It is found that the proposed method is less affected by the background interference from the qualitative comparison. Moreover, it can also effectively identify the riveting defects on the surface of each area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MKY完成签到,获得积分10
1秒前
是且啊完成签到,获得积分10
1秒前
可靠月亮发布了新的文献求助10
1秒前
lx关闭了lx文献求助
1秒前
科目三应助yu采纳,获得10
1秒前
冷笑完成签到,获得积分10
2秒前
辛勤心情关注了科研通微信公众号
2秒前
2秒前
打打应助xanderxue采纳,获得10
2秒前
你一头牛牛牛牛完成签到,获得积分10
2秒前
无风发布了新的文献求助10
2秒前
3秒前
CHENG_2025完成签到,获得积分10
3秒前
Hello应助123采纳,获得10
4秒前
旺帮主完成签到,获得积分10
4秒前
CipherSage应助54123采纳,获得10
4秒前
有点鸭梨呀完成签到 ,获得积分10
4秒前
Winter完成签到 ,获得积分10
4秒前
今后应助坦率的火车采纳,获得10
5秒前
5秒前
童小肥发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
dalian发布了新的文献求助10
6秒前
6秒前
6秒前
WCM完成签到,获得积分10
6秒前
xzh086发布了新的文献求助30
7秒前
青寻完成签到,获得积分10
9秒前
刘小孩完成签到,获得积分10
9秒前
ncuwzq完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
科研通AI6应助活泼的萝卜采纳,获得10
10秒前
ftl完成签到 ,获得积分10
10秒前
10秒前
童小肥完成签到,获得积分10
11秒前
aa关闭了aa文献求助
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316787
求助须知:如何正确求助?哪些是违规求助? 4459242
关于积分的说明 13874397
捐赠科研通 4349242
什么是DOI,文献DOI怎么找? 2388650
邀请新用户注册赠送积分活动 1382839
关于科研通互助平台的介绍 1352214