克拉斯
血管生成
癌症研究
肿瘤进展
肿瘤微环境
转移
结直肠癌
癌症
生物
医学
内科学
作者
Wen‐Hao Hsu,Kyle A. LaBella,Yiyun Lin,Ping Xu,Rumi Lee,Cheng‐En Hsieh,Lei Yang,Ashley Zhou,Jonathan M. Blecher,Chang‐Jiun Wu,Kangyu Lin,Xiaoying Shang,Shan Jiang,Denise J. Spring,Yan Xia,Peiwen Chen,John Paul Shen,Scott Kopetz,Ronald A. DePinho
出处
期刊:Cancer Discovery
[American Association for Cancer Research]
日期:2023-09-27
卷期号:13 (12): 2652-2673
被引量:24
标识
DOI:10.1158/2159-8290.cd-22-1467
摘要
Abstract Oncogenic KRAS (KRAS*) contributes to many cancer hallmarks. In colorectal cancer, KRAS* suppresses antitumor immunity to promote tumor invasion and metastasis. Here, we uncovered that KRAS* transforms the phenotype of carcinoma-associated fibroblasts (CAF) into lipid-laden CAFs, promoting angiogenesis and tumor progression. Mechanistically, KRAS* activates the transcription factor CP2 (TFCP2) that upregulates the expression of the proadipogenic factors BMP4 and WNT5B, triggering the transformation of CAFs into lipid-rich CAFs. These lipid-rich CAFs, in turn, produce VEGFA to spur angiogenesis. In KRAS*-driven colorectal cancer mouse models, genetic or pharmacologic neutralization of TFCP2 reduced lipid-rich CAFs, lessened tumor angiogenesis, and improved overall survival. Correspondingly, in human colorectal cancer, lipid-rich CAF and TFCP2 signatures correlate with worse prognosis. This work unveils a new role for KRAS* in transforming CAFs, driving tumor angiogenesis and disease progression, providing an actionable therapeutic intervention for KRAS*-driven colorectal cancer. Significance: This study identified a molecular mechanism contributing to KRAS*-driven colorectal cancer progression via fibroblast transformation in the tumor microenvironment to produce VEGFA driving tumor angiogenesis. In preclinical models, targeting the KRAS*–TFCP2–VEGFA axis impaired tumor progression, revealing a potential novel therapeutic option for patients with KRAS*-driven colorectal cancer. This article is featured in Selected Articles from This Issue, p. 2489
科研通智能强力驱动
Strongly Powered by AbleSci AI