亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image presentation and effective classification of odor intensity levels using multi-channel electronic nose technology combined with GASF and CNN

气味 电子鼻 人工智能 模式识别(心理学) 计算机科学 卷积神经网络 计算机视觉 化学 有机化学
作者
Lijian Xiong,Meng He,Can Hu,Yuxin Hou,Shaoyun Han,Xiuying Tang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:395: 134492-134492 被引量:29
标识
DOI:10.1016/j.snb.2023.134492
摘要

This paper proposes a novel data processing scheme for electronic noses that combines the gramian angular field (GAF) and convolutional neural network (CNN) to achieve high performance in classifying five levels of odor intensity. Specifically, a multi-channel e-nose was developed to detect various gases, including hydrogen sulfide, ammonia, sulfur dioxide, trimethylamine, and alkane gases, among others, in complex odor components. The sensor array was optimized through Spearman correlation analysis of the sensor signals and artificial olfactory odor intensity levels. Moreover, the one-dimensional temporal sensor data was converted into two-dimensional color images using the GAF (GASF/GADF) algorithm. This approach enables a more detailed presentation of deep features while retaining the time-domain dependence of the signals. To enhance the performance of classification, a multi-scale feature fusion network (MFFNet) was designed. Notably, GASF-converted images are more effective in characterizing sensor data for different odor intensity levels than GADF-converted images. Compared to classical CNN classification models such as AlexNet, GoogLeNet, and ResNet18, MFFNet achieved the highest accuracy and macro average F1-score on the test set, which were 93.75% and 93.34%, respectively. The results demonstrate the efficient classification of odor intensity levels by combining multi-channel e-nose technology, GASF, and CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
1秒前
pineapple发布了新的文献求助10
15秒前
华仔应助满意的夜柳采纳,获得30
18秒前
20秒前
遥感小虫完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
27秒前
我爱科研发布了新的文献求助10
27秒前
Bin完成签到,获得积分10
27秒前
慕青应助sbc采纳,获得10
32秒前
回忆敌不过尿意完成签到,获得积分10
35秒前
pineapple完成签到,获得积分10
35秒前
小蘑菇应助我爱科研采纳,获得10
38秒前
吃了吃了完成签到,获得积分10
40秒前
41秒前
47秒前
董世英发布了新的文献求助10
48秒前
LJL完成签到 ,获得积分10
56秒前
开朗的千雁完成签到 ,获得积分10
56秒前
bkagyin应助董世英采纳,获得10
57秒前
58秒前
1分钟前
1分钟前
1分钟前
SciGPT应助Marshall采纳,获得10
1分钟前
1分钟前
董世英完成签到,获得积分10
1分钟前
ceeray23发布了新的文献求助20
1分钟前
痞老板死磕蟹黄堡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Marshall发布了新的文献求助10
1分钟前
Chloe完成签到,获得积分10
1分钟前
精神异常凹凸曼完成签到,获得积分20
1分钟前
1分钟前
NexusExplorer应助Chloe采纳,获得10
1分钟前
MC749GG发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664136
求助须知:如何正确求助?哪些是违规求助? 4858127
关于积分的说明 15107210
捐赠科研通 4822602
什么是DOI,文献DOI怎么找? 2581577
邀请新用户注册赠送积分活动 1535787
关于科研通互助平台的介绍 1494017