Image presentation and effective classification of odor intensity levels using multi-channel electronic nose technology combined with GASF and CNN

气味 电子鼻 人工智能 模式识别(心理学) 计算机科学 卷积神经网络 计算机视觉 化学 有机化学
作者
Lijian Xiong,Meng He,Can Hu,Yuxin Hou,Shaoyun Han,Xiuying Tang
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:395: 134492-134492 被引量:29
标识
DOI:10.1016/j.snb.2023.134492
摘要

This paper proposes a novel data processing scheme for electronic noses that combines the gramian angular field (GAF) and convolutional neural network (CNN) to achieve high performance in classifying five levels of odor intensity. Specifically, a multi-channel e-nose was developed to detect various gases, including hydrogen sulfide, ammonia, sulfur dioxide, trimethylamine, and alkane gases, among others, in complex odor components. The sensor array was optimized through Spearman correlation analysis of the sensor signals and artificial olfactory odor intensity levels. Moreover, the one-dimensional temporal sensor data was converted into two-dimensional color images using the GAF (GASF/GADF) algorithm. This approach enables a more detailed presentation of deep features while retaining the time-domain dependence of the signals. To enhance the performance of classification, a multi-scale feature fusion network (MFFNet) was designed. Notably, GASF-converted images are more effective in characterizing sensor data for different odor intensity levels than GADF-converted images. Compared to classical CNN classification models such as AlexNet, GoogLeNet, and ResNet18, MFFNet achieved the highest accuracy and macro average F1-score on the test set, which were 93.75% and 93.34%, respectively. The results demonstrate the efficient classification of odor intensity levels by combining multi-channel e-nose technology, GASF, and CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7秒前
hehuo完成签到,获得积分20
9秒前
负责的太兰完成签到,获得积分10
11秒前
ouwen发布了新的文献求助10
11秒前
闪闪芯完成签到 ,获得积分10
11秒前
12秒前
WEN完成签到,获得积分10
12秒前
完美世界应助萨赫蛋糕采纳,获得10
13秒前
哈哈哈哈哈应助Thomaswong采纳,获得10
13秒前
13秒前
14秒前
温水云完成签到,获得积分20
15秒前
西门老黑完成签到,获得积分10
15秒前
Owen应助hehuo采纳,获得10
15秒前
Criminology34应助执着的忆雪采纳,获得10
16秒前
领导范儿应助LiYubin采纳,获得10
16秒前
17秒前
传奇3应助ouwen采纳,获得10
18秒前
wweiyyulling发布了新的文献求助10
18秒前
科研小菜完成签到 ,获得积分10
18秒前
xixi完成签到 ,获得积分10
19秒前
19秒前
20秒前
瑞_完成签到,获得积分10
20秒前
沈樾完成签到 ,获得积分10
20秒前
21秒前
YuZhang完成签到 ,获得积分10
21秒前
DONGLIANG发布了新的文献求助10
21秒前
唐很甜完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
勤劳的沛山完成签到 ,获得积分10
22秒前
土星完成签到,获得积分20
23秒前
just123发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
土星发布了新的文献求助10
25秒前
HenrySheng完成签到,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073345
求助须知:如何正确求助?哪些是违规求助? 4293480
关于积分的说明 13378526
捐赠科研通 4114894
什么是DOI,文献DOI怎么找? 2253241
邀请新用户注册赠送积分活动 1258048
关于科研通互助平台的介绍 1190881