Image presentation and effective classification of odor intensity levels using multi-channel electronic nose technology combined with GASF and CNN

气味 电子鼻 人工智能 模式识别(心理学) 计算机科学 卷积神经网络 计算机视觉 化学 有机化学
作者
Lijian Xiong,Meng He,Can Hu,Yuxin Hou,Shaoyun Han,Xiuying Tang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:395: 134492-134492 被引量:29
标识
DOI:10.1016/j.snb.2023.134492
摘要

This paper proposes a novel data processing scheme for electronic noses that combines the gramian angular field (GAF) and convolutional neural network (CNN) to achieve high performance in classifying five levels of odor intensity. Specifically, a multi-channel e-nose was developed to detect various gases, including hydrogen sulfide, ammonia, sulfur dioxide, trimethylamine, and alkane gases, among others, in complex odor components. The sensor array was optimized through Spearman correlation analysis of the sensor signals and artificial olfactory odor intensity levels. Moreover, the one-dimensional temporal sensor data was converted into two-dimensional color images using the GAF (GASF/GADF) algorithm. This approach enables a more detailed presentation of deep features while retaining the time-domain dependence of the signals. To enhance the performance of classification, a multi-scale feature fusion network (MFFNet) was designed. Notably, GASF-converted images are more effective in characterizing sensor data for different odor intensity levels than GADF-converted images. Compared to classical CNN classification models such as AlexNet, GoogLeNet, and ResNet18, MFFNet achieved the highest accuracy and macro average F1-score on the test set, which were 93.75% and 93.34%, respectively. The results demonstrate the efficient classification of odor intensity levels by combining multi-channel e-nose technology, GASF, and CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳坤发布了新的文献求助10
3秒前
科学家完成签到,获得积分10
3秒前
JimmyChin发布了新的文献求助10
5秒前
五木完成签到,获得积分10
7秒前
Crystal完成签到 ,获得积分10
13秒前
李爱国应助善良的广缘采纳,获得10
15秒前
斯文败类应助JimmyChin采纳,获得10
19秒前
19秒前
123完成签到,获得积分10
22秒前
仍仍完成签到,获得积分10
22秒前
星辰大海应助Diplogen采纳,获得10
23秒前
23秒前
Zx_1993应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
今后应助科研通管家采纳,获得10
29秒前
乐乐应助科研通管家采纳,获得10
29秒前
科目三应助科研通管家采纳,获得10
29秒前
Owen应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得30
30秒前
浮游应助科研通管家采纳,获得10
30秒前
BowieHuang应助科研通管家采纳,获得10
30秒前
传奇3应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
30秒前
今后应助科研通管家采纳,获得10
30秒前
Ava应助科研通管家采纳,获得10
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
Owen应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
34秒前
39秒前
mmmmmMM完成签到 ,获得积分10
39秒前
橙啊程发布了新的文献求助10
41秒前
pluto应助三石盟约采纳,获得10
44秒前
45秒前
迷路千琴完成签到,获得积分10
47秒前
pluto应助三石盟约采纳,获得10
55秒前
研友_Zlem38发布了新的文献求助10
57秒前
帅气蓝完成签到,获得积分10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560435
求助须知:如何正确求助?哪些是违规求助? 4645604
关于积分的说明 14675724
捐赠科研通 4586775
什么是DOI,文献DOI怎么找? 2516534
邀请新用户注册赠送积分活动 1490145
关于科研通互助平台的介绍 1460989