Image presentation and effective classification of odor intensity levels using multi-channel electronic nose technology combined with GASF and CNN

气味 电子鼻 人工智能 模式识别(心理学) 计算机科学 卷积神经网络 计算机视觉 化学 有机化学
作者
Lijian Xiong,Meng He,Can Hu,Yuxin Hou,Shaoyun Han,Xiuying Tang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:395: 134492-134492 被引量:14
标识
DOI:10.1016/j.snb.2023.134492
摘要

This paper proposes a novel data processing scheme for electronic noses that combines the gramian angular field (GAF) and convolutional neural network (CNN) to achieve high performance in classifying five levels of odor intensity. Specifically, a multi-channel e-nose was developed to detect various gases, including hydrogen sulfide, ammonia, sulfur dioxide, trimethylamine, and alkane gases, among others, in complex odor components. The sensor array was optimized through Spearman correlation analysis of the sensor signals and artificial olfactory odor intensity levels. Moreover, the one-dimensional temporal sensor data was converted into two-dimensional color images using the GAF (GASF/GADF) algorithm. This approach enables a more detailed presentation of deep features while retaining the time-domain dependence of the signals. To enhance the performance of classification, a multi-scale feature fusion network (MFFNet) was designed. Notably, GASF-converted images are more effective in characterizing sensor data for different odor intensity levels than GADF-converted images. Compared to classical CNN classification models such as AlexNet, GoogLeNet, and ResNet18, MFFNet achieved the highest accuracy and macro average F1-score on the test set, which were 93.75% and 93.34%, respectively. The results demonstrate the efficient classification of odor intensity levels by combining multi-channel e-nose technology, GASF, and CNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LSM完成签到,获得积分10
刚刚
刚刚
sunflower完成签到,获得积分10
1秒前
3秒前
3秒前
归海人英发布了新的文献求助10
3秒前
4秒前
mov完成签到,获得积分10
4秒前
完美世界应助英俊的文龙采纳,获得10
5秒前
6秒前
1011完成签到,获得积分10
7秒前
小马发布了新的文献求助10
7秒前
思源应助Ryan采纳,获得30
9秒前
9秒前
MinQi完成签到,获得积分10
10秒前
gluwater发布了新的文献求助10
12秒前
12秒前
12秒前
pengyyang完成签到,获得积分10
13秒前
纯真的冰蓝完成签到 ,获得积分10
14秒前
稳重完成签到 ,获得积分10
18秒前
pengyyang发布了新的文献求助10
18秒前
19秒前
从容安波发布了新的文献求助10
20秒前
无聊的熠彤完成签到 ,获得积分10
21秒前
Jessica发布了新的文献求助20
22秒前
一个有点长的序完成签到 ,获得积分10
23秒前
大聪明完成签到,获得积分20
24秒前
24秒前
24秒前
bkagyin应助a846204516采纳,获得10
24秒前
24秒前
Akim应助每文采纳,获得10
24秒前
Peyton Why发布了新的文献求助10
25秒前
MQ完成签到,获得积分20
26秒前
26秒前
hyhyhyhy发布了新的文献求助10
26秒前
en完成签到 ,获得积分10
27秒前
28秒前
MQ发布了新的文献求助10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140111
求助须知:如何正确求助?哪些是违规求助? 2790982
关于积分的说明 7797203
捐赠科研通 2447324
什么是DOI,文献DOI怎么找? 1301841
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194