Au/Pt Bimetallic Nanowires with Stepped Pt Sites for Enhanced C–C Cleavage in C2+ Alcohol Electro-oxidation Reactions

化学 双金属片 催化作用 酒精氧化 乙二醇 纳米线 键裂 氧化还原 化学工程 光化学 纳米技术 无机化学 有机化学 材料科学 工程类
作者
Kecheng Wei,Honghong Lin,Xueru Zhao,Zhonglong Zhao,Nebojša Marinković,Michael J. Morales,Zhennan Huang,Laura Perlmutter,Huanqin Guan,Cooro Harris,Miaofang Chi,Gang Lü,Kotaro Sasaki,Shouheng Sun
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (34): 19076-19085 被引量:23
标识
DOI:10.1021/jacs.3c07027
摘要

Efficient C–C bond cleavage and oxidation of alcohols to CO2 is the key to developing highly efficient alcohol fuel cells for renewable energy applications. In this work, we report the synthesis of core/shell Au/Pt nanowires (NWs) with stepped Pt clusters deposited along the ultrathin (2.3 nm) stepped Au NWs as an active catalyst to effectively oxidize alcohols to CO2. The catalytic oxidation reaction is dependent on the Au/Pt ratios, and the Au1.0/Pt0.2 NWs have the largest percentage (∼75%) of stepped Au/Pt sites and show the highest activity for ethanol electro-oxidation, reaching an unprecedented 196.9 A/mgPt (32.5 A/mgPt+Au). This NW catalyst is also active in catalyzing the oxidation of other primary alcohols, such as methanol, n-propanol, and ethylene glycol. In situ X-ray absorption spectroscopy and infrared spectroscopy are used to characterize the catalyst structure and to identify key reaction intermediates, providing concrete evidence that the synergy between the low-coordinated Pt sites and the stepped Au NWs is essential to catalyze the alcohol oxidation reaction, which is further supported by DFT calculations that the C–C bond cleavage is indeed enhanced on the undercoordinated Pt–Au surface. Our study provides important evidence that a core/shell structure with stepped core/shell sites is essential to enhance electrochemical oxidation of alcohols and will also be central to understanding electro-oxidation reactions and to the future development of highly efficient direct alcohol fuel cells for renewable energy applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛泡完成签到 ,获得积分10
1秒前
materials_发布了新的文献求助10
2秒前
ZW完成签到,获得积分10
2秒前
2秒前
哈哈哈发布了新的文献求助10
2秒前
共享精神应助呜呜呜采纳,获得10
2秒前
麦满分发布了新的文献求助10
2秒前
医学森发布了新的文献求助10
4秒前
许熙瑜发布了新的文献求助10
4秒前
xibei发布了新的文献求助10
4秒前
金虎发布了新的文献求助10
4秒前
wulong完成签到,获得积分10
4秒前
Ning发布了新的文献求助10
4秒前
童翰完成签到,获得积分10
4秒前
abo发布了新的文献求助10
6秒前
wen完成签到,获得积分10
6秒前
竹蜻蜓完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
LT完成签到,获得积分10
8秒前
嘻嘻发布了新的文献求助10
9秒前
9秒前
踏实谷蓝发布了新的文献求助200
10秒前
10秒前
齐静春完成签到,获得积分10
11秒前
辛泡关注了科研通微信公众号
11秒前
朱猪侠完成签到,获得积分10
12秒前
深情安青应助潇洒雁梅采纳,获得10
12秒前
12秒前
许熙瑜完成签到,获得积分10
13秒前
苏夏完成签到 ,获得积分10
13秒前
pai先生发布了新的文献求助10
14秒前
14秒前
隐形曼青应助zrw采纳,获得10
14秒前
李暖玉完成签到,获得积分20
14秒前
垚乐应助wjx采纳,获得10
15秒前
ACOY应助wjx采纳,获得10
15秒前
Akim应助wjx采纳,获得10
15秒前
ACOY应助wjx采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708