Photogrammetry-based bending monitoring and load identification of steel truss structures

桁架 弯曲 摄影测量学 结构工程 流离失所(心理学) 鉴定(生物学) 工程类 计算机科学 人工智能 心理学 植物 生物 心理治疗师
作者
Jintao Wang,Yu-Fei Liu,Xiaogang Liu,Qingrui Yue,Jian-Guo Nie
出处
期刊:Advances in Structural Engineering [SAGE]
卷期号:26 (13): 2543-2561 被引量:2
标识
DOI:10.1177/13694332231194686
摘要

The bending of steel truss structures is an important gauge for detecting, identifying, and evaluating potential issues with structural safety performance. The limitations and high cost of traditional monitoring methods make it challenging to carry out stable long-term monitoring. Therefore, this paper developed a displacement monitoring system for steel truss structures which fulfill the requirements of having low cost, high stability, and ease of operation. The system is based on the improved sub-pixel positioning technology, achieving precise positioning in unfavorable conditions such as long structure-camera distance, angle skew, and dim light. Then, this system was calibrated through field experiment and compared with other measurement systems. Finally, a load identification method was developed to identify discrepancies between the true load and the design load. This method uses optimization functions to identify the true load applied in the experiment, and the optimization parameter obtained by a genetic algorithm iteration is output as the optimal solution. The results suggest that the photogrammetric system performs well in practical engineering applications and can provide advantages including high precision, low cost, simple operation, etc. Results obtained by the load identification method agree well with measurements obtained from the actual structure, and can serve as a tool for evaluating the mechanical properties of similar structures. This method monitors potential risks of steel truss structures, and greatly improve the stability and safety of such structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
后知不觉发布了新的文献求助10
刚刚
刚刚
嘿嘿嘿关注了科研通微信公众号
1秒前
1秒前
科目三应助一切顺利元元采纳,获得10
2秒前
3秒前
liu336371完成签到,获得积分10
3秒前
4秒前
是我呀吼完成签到,获得积分10
4秒前
5秒前
tree驳回了一一应助
5秒前
俊逸若之发布了新的文献求助10
6秒前
务实莫言完成签到,获得积分10
6秒前
小满发布了新的文献求助10
7秒前
行行行完成签到 ,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
golf完成签到,获得积分10
9秒前
腼腆的缘分完成签到,获得积分10
9秒前
小石头完成签到,获得积分10
9秒前
9秒前
万能图书馆应助俊逸若之采纳,获得10
10秒前
10秒前
shishuang发布了新的文献求助10
11秒前
科研通AI6应助大胆的平蓝采纳,获得10
11秒前
小蘑菇应助Magical采纳,获得10
11秒前
GJ发布了新的文献求助10
11秒前
11秒前
科研通AI6应助好名字采纳,获得10
12秒前
科研通AI6应助动听书文采纳,获得10
12秒前
lucky发布了新的文献求助10
13秒前
离子键发布了新的文献求助10
13秒前
liz发布了新的文献求助10
13秒前
strongfrog发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
灰灰成长中完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836