Photogrammetry-based bending monitoring and load identification of steel truss structures

桁架 弯曲 摄影测量学 结构工程 流离失所(心理学) 鉴定(生物学) 工程类 计算机科学 人工智能 心理学 植物 生物 心理治疗师
作者
Jintao Wang,Yu-Fei Liu,Xiaogang Liu,Qingrui Yue,Jian-Guo Nie
出处
期刊:Advances in Structural Engineering [SAGE Publishing]
卷期号:26 (13): 2543-2561 被引量:2
标识
DOI:10.1177/13694332231194686
摘要

The bending of steel truss structures is an important gauge for detecting, identifying, and evaluating potential issues with structural safety performance. The limitations and high cost of traditional monitoring methods make it challenging to carry out stable long-term monitoring. Therefore, this paper developed a displacement monitoring system for steel truss structures which fulfill the requirements of having low cost, high stability, and ease of operation. The system is based on the improved sub-pixel positioning technology, achieving precise positioning in unfavorable conditions such as long structure-camera distance, angle skew, and dim light. Then, this system was calibrated through field experiment and compared with other measurement systems. Finally, a load identification method was developed to identify discrepancies between the true load and the design load. This method uses optimization functions to identify the true load applied in the experiment, and the optimization parameter obtained by a genetic algorithm iteration is output as the optimal solution. The results suggest that the photogrammetric system performs well in practical engineering applications and can provide advantages including high precision, low cost, simple operation, etc. Results obtained by the load identification method agree well with measurements obtained from the actual structure, and can serve as a tool for evaluating the mechanical properties of similar structures. This method monitors potential risks of steel truss structures, and greatly improve the stability and safety of such structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Erin完成签到,获得积分10
1秒前
浩然山河完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
是阿龙呀完成签到,获得积分10
2秒前
冰山泥发布了新的文献求助10
3秒前
故里发布了新的文献求助30
3秒前
Rhannnn完成签到 ,获得积分10
3秒前
3秒前
huatinxu发布了新的文献求助10
3秒前
平淡亦云完成签到 ,获得积分10
4秒前
英俊的铭应助大大怪采纳,获得10
4秒前
4秒前
科目三应助xh采纳,获得10
5秒前
嘉冉发布了新的文献求助10
5秒前
wanci应助激动的一手采纳,获得10
6秒前
hhee完成签到 ,获得积分10
6秒前
6秒前
所所应助冷傲的代男采纳,获得10
7秒前
Lesley完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
yang完成签到,获得积分10
9秒前
小蜻蜓应助五六七采纳,获得10
9秒前
Criminology34应助五六七采纳,获得10
9秒前
9秒前
斯文败类应助pray采纳,获得10
9秒前
10秒前
10秒前
科研通AI6应助研友_汪老头采纳,获得10
11秒前
12秒前
嗨嗨害发布了新的文献求助10
13秒前
NexusExplorer应助yiheng采纳,获得10
13秒前
yxy发布了新的文献求助10
13秒前
yxy发布了新的文献求助10
13秒前
yxy发布了新的文献求助10
13秒前
儒雅谷芹完成签到,获得积分10
13秒前
xh发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259826
求助须知:如何正确求助?哪些是违规求助? 4421346
关于积分的说明 13762778
捐赠科研通 4295329
什么是DOI,文献DOI怎么找? 2356838
邀请新用户注册赠送积分活动 1353198
关于科研通互助平台的介绍 1314374