The roles of mRNA and microRNA (miRNA) are well known in many diseases, including ischemic stroke; thus, integration analysis using mRNA and miRNA is important to elucidate pathogenesis. However, their contribution, especially that of miRNA-targeted mRNA, to the severity of acute ischemic stroke remains unclear. Therefore, we examined mRNA and miRNA integration analysis targeted for acute ischemic stroke to clarify the pathway related to acute stroke severity.We performed Ingenuity Pathway Analysis (IPA) using RNA extracted from the whole blood of four healthy controls, six minor acute ischemic stroke patients (MS; National Institutes of Health Stroke Scale [NIHSS] < 8), and six severe acute ischemic stroke patients (SS; NIHSS ≥ 8) on admission. mRNA and miRNA were measured using RNA sequencing and RNA expression variation; canonical pathway analysis (CPA) and upstream regulator analyses were performed.Acute ischemic stroke patients demonstrated different RNA expressions to healthy controls. Compared to MS patients, in the SS patients, 1222 mRNA, 96 miRNA, and 935 miRNA-targeted mRNA expressions were identified among differentially expressed RNA expressions (p<0.05, |log2 fold change| >1.1). CPA by IPA using mRNAs or miRNA-targeted mRNAs showed that macrophage-stimulating protein (MSP)-recepteur d'origine nantais (RON) signaling was mostly activated in SS patients compared to in MS patients. In addition, upstream regulator analysis in IPA showed that most mRNAs located upstream are miRNAs.In severe acute stroke, integration of mRNA and microRNA analysis showed activated MSP-RON signaling in macrophages, and multiple miRNAs comprehensively controlled the overall pathophysiology of stroke.