ATOM: Adaptive Task Offloading With Two-Stage Hybrid Matching in MEC-Enabled Industrial IoT

计算机科学 服务器 超时 任务(项目管理) 匹配(统计) 启发式 无线 分布式计算 计算机网络 实时计算 操作系统 人工智能 统计 数学 管理 经济
作者
Jiancheng Chi,Tie Qiu,Fu Xiao,Xiaobo Zhou
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 4861-4877 被引量:3
标识
DOI:10.1109/tmc.2023.3302834
摘要

The Industrial Internet of Things (IIoT) integrates diverse wireless and heterogeneous devices to enable time-sensitive applications. Multi-access edge computing (MEC) offers computing services for nearby tasks to meet their time requirements. However, offloading a large number of tasks to servers with minimal time is a challenging issue. Existing approaches typically allocate tasks into equal-length timeslots for offloading based on optimization or heuristic methods, overlooking the time-varying nature of task arrival density. This neglect significantly increases task execution time. To address this problem, we propose an Adaptive Task Offloading scheme with two-stage hybrid Matching (ATOM). In ATOM, a global buffer with an adjustable threshold is employed to store task information, enabling it to adapt to the time-varying arrival density and execute different offloading stages accordingly. In the online matching stage, if the threshold is not reached, tasks in the buffer are promptly offloaded to the most suitable server. In the offline matching stage, when the threshold is exceeded, all tasks in the buffer are optimally matched with servers and offloaded in batches. Experimental results demonstrate that ATOM outperforms state-of-the-art schemes in terms of average execution time and timeout rate, achieving reductions of 23.3% and 10.4%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柴六斤发布了新的文献求助10
刚刚
啊就是地方就啊都是完成签到,获得积分10
刚刚
1秒前
1秒前
爱听歌的夏烟完成签到,获得积分10
1秒前
2秒前
堪雅寒完成签到,获得积分10
2秒前
spring079完成签到,获得积分10
2秒前
2秒前
linliqing完成签到,获得积分10
2秒前
2秒前
JamesPei应助happiness采纳,获得10
2秒前
flying蝈蝈完成签到,获得积分10
2秒前
vvvvvv完成签到,获得积分10
3秒前
3秒前
热心乐驹完成签到,获得积分10
4秒前
念念完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
123study0完成签到,获得积分10
5秒前
锂氧完成签到,获得积分10
5秒前
曼曼发布了新的文献求助10
6秒前
6秒前
FashionBoy应助菠萝水手采纳,获得30
7秒前
Orange应助洋芋土豆丝采纳,获得10
7秒前
7秒前
7秒前
dockercompose99完成签到,获得积分10
7秒前
7秒前
8秒前
huahua发布了新的文献求助10
8秒前
李爱国应助全球免费科研1采纳,获得10
8秒前
8秒前
锂氧发布了新的文献求助10
9秒前
收集快乐完成签到 ,获得积分10
9秒前
幻心发布了新的文献求助10
9秒前
幽默孤容发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439