Improvement in District Scale Heavy Rainfall Prediction Over Complex Terrain of North East India Using Deep Learning

天气研究与预报模式 环境科学 暴发洪水 地形 气象学 百万 洪水(心理学) 气候学 数值天气预报 比例(比率) 参数化(大气建模) 地理 地质学 地图学 大洪水 心理学 贫穷 物理 考古 量子力学 辐射传输 经济增长 经济 心理治疗师
作者
Omveer Sharma,Dhananjay Trivedi,Sandeep Pattnaik,Vivekananda Hazra,Niladri B. Puhan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-8 被引量:4
标识
DOI:10.1109/tgrs.2023.3322676
摘要

Predicting heavy rainfall events (HREs) in real time poses a significant challenge in India, particularly in complex terrain regions like Assam, where these hydro-meteorological events frequently associated with flash floods with severe consequences over region. The devastating HREs in June 2022 led to numerous casualties, extensive damage, and economic losses exceeding 200 crore, necessitating the evacuation of over 4 million individuals. As we write this paper Assam again going through immense flooding situation in now i.e. June2023. Due to the limitations of deterministic numerical weather models in accurately forecasting these events, the study explores the incorporation of deep learning (DL) models, specifically U-Nets, using simulated daily accumulated rainfall outputs from various parametrization schemes. Over a four-day period in June 2022, the U-Net based model demonstrated superior skills in predicting rainfall at the district scale, achieving a Mean Absolute Error (MAE) of less than 12mm, outperforming individual and ensemble model outputs. Comparing the DL model's performance to the Weather Research and Forecasting (WRF) forecasts, it exhibited a remarkable 64.78% reduction in MAE across Assam. Notably, the proposed model accurately predicted HREs in specific districts such as Barpeta, Kamrup, Kokrajhar, and Nalbari, showcasing improved spatial variation compared to the WRF model. The DL model's predictions aligned with actual rainfall (> 150 mm) observations from the India Meteorological Department (IMD), while the WRF forecasts consistently underestimated rainfall intensity (< 100 mm). Furthermore, the proposed model achieved a high prediction accuracy of 77.9% in categorical rainfall prediction, significantly outperforming the WRF schemes by 38.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bin0920发布了新的文献求助10
刚刚
aaaaaa完成签到,获得积分10
1秒前
tangsuyun完成签到,获得积分20
1秒前
MADKAI发布了新的文献求助50
1秒前
大方小白完成签到,获得积分10
1秒前
xiaokezhang发布了新的文献求助10
1秒前
1秒前
zhenzhen发布了新的文献求助10
2秒前
2秒前
hz_sz完成签到,获得积分10
3秒前
3秒前
空白完成签到,获得积分10
3秒前
所所应助合适苗条采纳,获得10
3秒前
专注易绿完成签到,获得积分10
4秒前
Anne应助吱嗷赵采纳,获得10
4秒前
xin应助666采纳,获得20
5秒前
YY发布了新的文献求助10
5秒前
5秒前
huanhuan完成签到,获得积分10
6秒前
小刘不笨完成签到,获得积分10
6秒前
吕绪特完成签到 ,获得积分10
6秒前
7秒前
愉快的夏菡完成签到,获得积分10
7秒前
研友_gnv61n完成签到,获得积分10
7秒前
zmy完成签到,获得积分10
7秒前
小蘑菇应助守约采纳,获得10
8秒前
8秒前
空白发布了新的文献求助10
9秒前
buno应助721采纳,获得20
9秒前
石阶上完成签到 ,获得积分10
9秒前
du完成签到 ,获得积分10
9秒前
Xu完成签到,获得积分10
10秒前
mmmm完成签到,获得积分10
10秒前
10秒前
情怀应助YY采纳,获得10
10秒前
懦弱的安珊完成签到,获得积分10
11秒前
Akim应助xiaokezhang采纳,获得10
11秒前
11秒前
柠木完成签到 ,获得积分10
11秒前
系统提示发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678