Improvement in District Scale Heavy Rainfall Prediction Over Complex Terrain of North East India Using Deep Learning

天气研究与预报模式 环境科学 暴发洪水 地形 气象学 百万 洪水(心理学) 气候学 数值天气预报 比例(比率) 参数化(大气建模) 地理 地质学 地图学 大洪水 心理学 贫穷 物理 考古 量子力学 辐射传输 经济增长 经济 心理治疗师
作者
Omveer Sharma,Dhananjay Trivedi,Sandeep Pattnaik,Vivekananda Hazra,Niladri B. Puhan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-8 被引量:4
标识
DOI:10.1109/tgrs.2023.3322676
摘要

Predicting heavy rainfall events (HREs) in real time poses a significant challenge in India, particularly in complex terrain regions like Assam, where these hydro-meteorological events frequently associated with flash floods with severe consequences over region. The devastating HREs in June 2022 led to numerous casualties, extensive damage, and economic losses exceeding 200 crore, necessitating the evacuation of over 4 million individuals. As we write this paper Assam again going through immense flooding situation in now i.e. June2023. Due to the limitations of deterministic numerical weather models in accurately forecasting these events, the study explores the incorporation of deep learning (DL) models, specifically U-Nets, using simulated daily accumulated rainfall outputs from various parametrization schemes. Over a four-day period in June 2022, the U-Net based model demonstrated superior skills in predicting rainfall at the district scale, achieving a Mean Absolute Error (MAE) of less than 12mm, outperforming individual and ensemble model outputs. Comparing the DL model's performance to the Weather Research and Forecasting (WRF) forecasts, it exhibited a remarkable 64.78% reduction in MAE across Assam. Notably, the proposed model accurately predicted HREs in specific districts such as Barpeta, Kamrup, Kokrajhar, and Nalbari, showcasing improved spatial variation compared to the WRF model. The DL model's predictions aligned with actual rainfall (> 150 mm) observations from the India Meteorological Department (IMD), while the WRF forecasts consistently underestimated rainfall intensity (< 100 mm). Furthermore, the proposed model achieved a high prediction accuracy of 77.9% in categorical rainfall prediction, significantly outperforming the WRF schemes by 38.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眼睛大的问丝完成签到 ,获得积分20
刚刚
1秒前
1秒前
1秒前
沉默飞松发布了新的文献求助10
1秒前
九九完成签到 ,获得积分10
1秒前
z3rofork发布了新的文献求助10
2秒前
3秒前
哈喽小雪发布了新的文献求助10
3秒前
含蓄康完成签到,获得积分20
3秒前
小赐完成签到,获得积分10
3秒前
salt7发布了新的文献求助10
4秒前
小菜鸟完成签到,获得积分10
4秒前
可爱的函函应助猪猪hero采纳,获得10
4秒前
科研通AI2S应助柯米克采纳,获得10
4秒前
6秒前
6秒前
6秒前
tyx发布了新的文献求助10
6秒前
8秒前
鸢翔flybird发布了新的文献求助10
9秒前
刘xy发布了新的文献求助10
9秒前
wjx发布了新的文献求助10
9秒前
9秒前
木子应助欣喜的秋灵采纳,获得50
10秒前
10秒前
kk应助林宥嘉采纳,获得10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助30
11秒前
11秒前
无奈行恶应助wangwei采纳,获得10
12秒前
勤奋尔冬完成签到 ,获得积分10
12秒前
充电宝应助yw采纳,获得10
13秒前
13秒前
Vincenzo发布了新的文献求助10
13秒前
13秒前
樱悼柳雪发布了新的文献求助10
14秒前
慕青应助哈喽小雪采纳,获得10
14秒前
伍六七完成签到 ,获得积分10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974797
求助须知:如何正确求助?哪些是违规求助? 3519250
关于积分的说明 11197623
捐赠科研通 3255405
什么是DOI,文献DOI怎么找? 1797769
邀请新用户注册赠送积分活动 877156
科研通“疑难数据库(出版商)”最低求助积分说明 806202