Improvement in District Scale Heavy Rainfall Prediction Over Complex Terrain of North East India Using Deep Learning

天气研究与预报模式 环境科学 暴发洪水 地形 气象学 百万 洪水(心理学) 气候学 数值天气预报 比例(比率) 参数化(大气建模) 地理 地质学 地图学 大洪水 心理学 贫穷 物理 考古 量子力学 辐射传输 经济增长 经济 心理治疗师
作者
Omveer Sharma,Dhananjay Trivedi,Sandeep Pattnaik,Vivekananda Hazra,Niladri B. Puhan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-8 被引量:12
标识
DOI:10.1109/tgrs.2023.3322676
摘要

Predicting heavy rainfall events (HREs) in real time poses a significant challenge in India, particularly in complex terrain regions like Assam, where these hydro-meteorological events frequently associated with flash floods with severe consequences over region. The devastating HREs in June 2022 led to numerous casualties, extensive damage, and economic losses exceeding 200 crore, necessitating the evacuation of over 4 million individuals. As we write this paper Assam again going through immense flooding situation in now i.e. June2023. Due to the limitations of deterministic numerical weather models in accurately forecasting these events, the study explores the incorporation of deep learning (DL) models, specifically U-Nets, using simulated daily accumulated rainfall outputs from various parametrization schemes. Over a four-day period in June 2022, the U-Net based model demonstrated superior skills in predicting rainfall at the district scale, achieving a Mean Absolute Error (MAE) of less than 12mm, outperforming individual and ensemble model outputs. Comparing the DL model's performance to the Weather Research and Forecasting (WRF) forecasts, it exhibited a remarkable 64.78% reduction in MAE across Assam. Notably, the proposed model accurately predicted HREs in specific districts such as Barpeta, Kamrup, Kokrajhar, and Nalbari, showcasing improved spatial variation compared to the WRF model. The DL model's predictions aligned with actual rainfall (> 150 mm) observations from the India Meteorological Department (IMD), while the WRF forecasts consistently underestimated rainfall intensity (< 100 mm). Furthermore, the proposed model achieved a high prediction accuracy of 77.9% in categorical rainfall prediction, significantly outperforming the WRF schemes by 38.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北遇故人发布了新的文献求助10
刚刚
1秒前
迎风完成签到,获得积分10
1秒前
神勇的归尘完成签到 ,获得积分10
1秒前
1秒前
~静完成签到,获得积分10
2秒前
大树发布了新的文献求助10
2秒前
xpqiu完成签到,获得积分10
2秒前
研友_浑不斜完成签到,获得积分10
3秒前
司康完成签到,获得积分10
3秒前
幽你一默完成签到,获得积分10
4秒前
milalala完成签到 ,获得积分10
4秒前
Ava应助司闻采纳,获得10
4秒前
4秒前
喵喵发布了新的文献求助10
5秒前
oy完成签到,获得积分10
5秒前
5秒前
5秒前
D&L发布了新的文献求助10
6秒前
芷莯完成签到,获得积分10
6秒前
7秒前
7秒前
Vicky完成签到,获得积分10
7秒前
刘鑫慧完成签到 ,获得积分10
7秒前
思源应助cloudup233采纳,获得10
7秒前
8秒前
xuegy11完成签到,获得积分10
8秒前
sandao发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
淡淡化蛹完成签到,获得积分10
11秒前
MRshenyy完成签到,获得积分10
11秒前
Akim应助子车半烟采纳,获得10
11秒前
公冶扬完成签到,获得积分10
12秒前
Silvia完成签到,获得积分10
13秒前
miamikk发布了新的文献求助10
13秒前
江脸脸发布了新的文献求助10
13秒前
Lny发布了新的文献求助10
13秒前
MG_aichy完成签到,获得积分10
13秒前
李亚莉完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651771
求助须知:如何正确求助?哪些是违规求助? 4785921
关于积分的说明 15056130
捐赠科研通 4810446
什么是DOI,文献DOI怎么找? 2573185
邀请新用户注册赠送积分活动 1529071
关于科研通互助平台的介绍 1488014