亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improvement in District Scale Heavy Rainfall Prediction Over Complex Terrain of North East India Using Deep Learning

天气研究与预报模式 环境科学 暴发洪水 地形 气象学 百万 洪水(心理学) 气候学 数值天气预报 比例(比率) 参数化(大气建模) 地理 地质学 地图学 大洪水 心理学 贫穷 物理 考古 量子力学 辐射传输 经济增长 经济 心理治疗师
作者
Omveer Sharma,Dhananjay Trivedi,Sandeep Pattnaik,Vivekananda Hazra,Niladri B. Puhan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-8 被引量:12
标识
DOI:10.1109/tgrs.2023.3322676
摘要

Predicting heavy rainfall events (HREs) in real time poses a significant challenge in India, particularly in complex terrain regions like Assam, where these hydro-meteorological events frequently associated with flash floods with severe consequences over region. The devastating HREs in June 2022 led to numerous casualties, extensive damage, and economic losses exceeding 200 crore, necessitating the evacuation of over 4 million individuals. As we write this paper Assam again going through immense flooding situation in now i.e. June2023. Due to the limitations of deterministic numerical weather models in accurately forecasting these events, the study explores the incorporation of deep learning (DL) models, specifically U-Nets, using simulated daily accumulated rainfall outputs from various parametrization schemes. Over a four-day period in June 2022, the U-Net based model demonstrated superior skills in predicting rainfall at the district scale, achieving a Mean Absolute Error (MAE) of less than 12mm, outperforming individual and ensemble model outputs. Comparing the DL model's performance to the Weather Research and Forecasting (WRF) forecasts, it exhibited a remarkable 64.78% reduction in MAE across Assam. Notably, the proposed model accurately predicted HREs in specific districts such as Barpeta, Kamrup, Kokrajhar, and Nalbari, showcasing improved spatial variation compared to the WRF model. The DL model's predictions aligned with actual rainfall (> 150 mm) observations from the India Meteorological Department (IMD), while the WRF forecasts consistently underestimated rainfall intensity (< 100 mm). Furthermore, the proposed model achieved a high prediction accuracy of 77.9% in categorical rainfall prediction, significantly outperforming the WRF schemes by 38.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
11秒前
呆毛发布了新的文献求助10
17秒前
赘婿应助甜美的秋尽采纳,获得10
20秒前
Akim应助pishuang采纳,获得10
22秒前
zqq完成签到,获得积分0
23秒前
生动画笔完成签到,获得积分10
27秒前
28秒前
pishuang发布了新的文献求助10
35秒前
浮游应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
51秒前
浮游应助科研通管家采纳,获得10
52秒前
52秒前
浮游应助科研通管家采纳,获得10
52秒前
59秒前
Tamako完成签到,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
深情安青应助无误采纳,获得10
1分钟前
1分钟前
发SCI完成签到,获得积分10
1分钟前
Tamako发布了新的文献求助10
1分钟前
1分钟前
无误完成签到,获得积分10
1分钟前
无误发布了新的文献求助10
1分钟前
Tamako关注了科研通微信公众号
1分钟前
111发布了新的文献求助10
1分钟前
xjn完成签到,获得积分10
1分钟前
橘子的海发布了新的文献求助10
1分钟前
在学一会完成签到,获得积分10
1分钟前
qq完成签到 ,获得积分10
1分钟前
852应助33采纳,获得10
1分钟前
浮曳发布了新的文献求助10
2分钟前
Leoon完成签到 ,获得积分10
2分钟前
浮曳完成签到,获得积分10
2分钟前
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463243
求助须知:如何正确求助?哪些是违规求助? 4567987
关于积分的说明 14312228
捐赠科研通 4493862
什么是DOI,文献DOI怎么找? 2461939
邀请新用户注册赠送积分活动 1450930
关于科研通互助平台的介绍 1426140