Improvement in District Scale Heavy Rainfall Prediction Over Complex Terrain of North East India Using Deep Learning

天气研究与预报模式 环境科学 暴发洪水 地形 气象学 百万 洪水(心理学) 气候学 数值天气预报 比例(比率) 参数化(大气建模) 地理 地质学 地图学 大洪水 心理学 贫穷 物理 考古 量子力学 辐射传输 经济增长 经济 心理治疗师
作者
Omveer Sharma,Dhananjay Trivedi,Sandeep Pattnaik,Vivekananda Hazra,Niladri B. Puhan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-8 被引量:12
标识
DOI:10.1109/tgrs.2023.3322676
摘要

Predicting heavy rainfall events (HREs) in real time poses a significant challenge in India, particularly in complex terrain regions like Assam, where these hydro-meteorological events frequently associated with flash floods with severe consequences over region. The devastating HREs in June 2022 led to numerous casualties, extensive damage, and economic losses exceeding 200 crore, necessitating the evacuation of over 4 million individuals. As we write this paper Assam again going through immense flooding situation in now i.e. June2023. Due to the limitations of deterministic numerical weather models in accurately forecasting these events, the study explores the incorporation of deep learning (DL) models, specifically U-Nets, using simulated daily accumulated rainfall outputs from various parametrization schemes. Over a four-day period in June 2022, the U-Net based model demonstrated superior skills in predicting rainfall at the district scale, achieving a Mean Absolute Error (MAE) of less than 12mm, outperforming individual and ensemble model outputs. Comparing the DL model's performance to the Weather Research and Forecasting (WRF) forecasts, it exhibited a remarkable 64.78% reduction in MAE across Assam. Notably, the proposed model accurately predicted HREs in specific districts such as Barpeta, Kamrup, Kokrajhar, and Nalbari, showcasing improved spatial variation compared to the WRF model. The DL model's predictions aligned with actual rainfall (> 150 mm) observations from the India Meteorological Department (IMD), while the WRF forecasts consistently underestimated rainfall intensity (< 100 mm). Furthermore, the proposed model achieved a high prediction accuracy of 77.9% in categorical rainfall prediction, significantly outperforming the WRF schemes by 38.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
lina发布了新的文献求助10
2秒前
小周发布了新的文献求助10
2秒前
3秒前
Jolene完成签到,获得积分10
3秒前
繁花发布了新的文献求助10
4秒前
脑洞疼应助科研的牲口采纳,获得10
4秒前
丘比特应助开朗艳一采纳,获得10
4秒前
CodeCraft应助Summer肖采纳,获得10
5秒前
LQY发布了新的文献求助10
6秒前
星期一完成签到,获得积分10
6秒前
ccyy完成签到 ,获得积分10
6秒前
8秒前
tr发布了新的文献求助10
8秒前
9秒前
9秒前
繁荣的凡完成签到 ,获得积分10
10秒前
在水一方应助tend采纳,获得10
12秒前
13秒前
繁花完成签到,获得积分10
13秒前
13秒前
13秒前
摸鱼仙人完成签到,获得积分10
13秒前
17发布了新的文献求助10
14秒前
rat完成签到,获得积分10
14秒前
JIRUIYI完成签到,获得积分10
15秒前
浮游应助HAN采纳,获得10
15秒前
飘逸秋荷完成签到,获得积分10
15秒前
专注的冰巧完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
小趴菜完成签到,获得积分10
17秒前
Jasper应助tr采纳,获得10
17秒前
18秒前
18秒前
18秒前
18秒前
CHH发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525150
求助须知:如何正确求助?哪些是违规求助? 4615463
关于积分的说明 14548366
捐赠科研通 4553496
什么是DOI,文献DOI怎么找? 2495334
邀请新用户注册赠送积分活动 1475898
关于科研通互助平台的介绍 1447659