Improvement in District Scale Heavy Rainfall Prediction Over Complex Terrain of North East India Using Deep Learning

天气研究与预报模式 环境科学 暴发洪水 地形 气象学 百万 洪水(心理学) 气候学 数值天气预报 比例(比率) 参数化(大气建模) 地理 地质学 地图学 大洪水 心理学 贫穷 物理 考古 量子力学 辐射传输 经济增长 经济 心理治疗师
作者
Omveer Sharma,Dhananjay Trivedi,Sandeep Pattnaik,Vivekananda Hazra,Niladri B. Puhan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-8 被引量:12
标识
DOI:10.1109/tgrs.2023.3322676
摘要

Predicting heavy rainfall events (HREs) in real time poses a significant challenge in India, particularly in complex terrain regions like Assam, where these hydro-meteorological events frequently associated with flash floods with severe consequences over region. The devastating HREs in June 2022 led to numerous casualties, extensive damage, and economic losses exceeding 200 crore, necessitating the evacuation of over 4 million individuals. As we write this paper Assam again going through immense flooding situation in now i.e. June2023. Due to the limitations of deterministic numerical weather models in accurately forecasting these events, the study explores the incorporation of deep learning (DL) models, specifically U-Nets, using simulated daily accumulated rainfall outputs from various parametrization schemes. Over a four-day period in June 2022, the U-Net based model demonstrated superior skills in predicting rainfall at the district scale, achieving a Mean Absolute Error (MAE) of less than 12mm, outperforming individual and ensemble model outputs. Comparing the DL model's performance to the Weather Research and Forecasting (WRF) forecasts, it exhibited a remarkable 64.78% reduction in MAE across Assam. Notably, the proposed model accurately predicted HREs in specific districts such as Barpeta, Kamrup, Kokrajhar, and Nalbari, showcasing improved spatial variation compared to the WRF model. The DL model's predictions aligned with actual rainfall (> 150 mm) observations from the India Meteorological Department (IMD), while the WRF forecasts consistently underestimated rainfall intensity (< 100 mm). Furthermore, the proposed model achieved a high prediction accuracy of 77.9% in categorical rainfall prediction, significantly outperforming the WRF schemes by 38.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助华北走地鸡采纳,获得10
1秒前
我是老大应助青云天采纳,获得10
2秒前
随意蚂蚁完成签到,获得积分10
4秒前
jincen发布了新的文献求助10
5秒前
5秒前
骡子发布了新的文献求助30
5秒前
玉锅巴完成签到,获得积分10
6秒前
7秒前
阿晨完成签到,获得积分10
8秒前
kento完成签到,获得积分0
8秒前
汤泽琪发布了新的文献求助30
8秒前
9秒前
小杭76应助Bin_Liu采纳,获得10
10秒前
hbhbj发布了新的文献求助10
11秒前
jy完成签到,获得积分10
12秒前
13秒前
ranccy发布了新的文献求助30
13秒前
flow完成签到,获得积分10
13秒前
鱼粉发布了新的文献求助10
14秒前
夜城如梦醉完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
水凝胶发布了新的文献求助10
16秒前
16秒前
隐形曼青应助骡子采纳,获得10
17秒前
hbhbj发布了新的文献求助10
18秒前
关我屁事完成签到 ,获得积分10
18秒前
白糖完成签到,获得积分10
18秒前
林泽华发布了新的文献求助10
19秒前
1s完成签到,获得积分10
20秒前
20秒前
21秒前
旋光活性完成签到 ,获得积分10
22秒前
Rufus发布了新的文献求助10
22秒前
Air云完成签到,获得积分10
23秒前
脑洞疼应助栀栀云安采纳,获得10
23秒前
Jiro完成签到,获得积分10
23秒前
tleeny发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306048
求助须知:如何正确求助?哪些是违规求助? 4451900
关于积分的说明 13853368
捐赠科研通 4339433
什么是DOI,文献DOI怎么找? 2382558
邀请新用户注册赠送积分活动 1377532
关于科研通互助平台的介绍 1345147