Improvement in District Scale Heavy Rainfall Prediction Over Complex Terrain of North East India Using Deep Learning

天气研究与预报模式 环境科学 暴发洪水 地形 气象学 百万 洪水(心理学) 气候学 数值天气预报 比例(比率) 参数化(大气建模) 地理 地质学 地图学 大洪水 心理学 贫穷 物理 考古 量子力学 辐射传输 经济增长 经济 心理治疗师
作者
Omveer Sharma,Dhananjay Trivedi,Sandeep Pattnaik,Vivekananda Hazra,Niladri B. Puhan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-8 被引量:12
标识
DOI:10.1109/tgrs.2023.3322676
摘要

Predicting heavy rainfall events (HREs) in real time poses a significant challenge in India, particularly in complex terrain regions like Assam, where these hydro-meteorological events frequently associated with flash floods with severe consequences over region. The devastating HREs in June 2022 led to numerous casualties, extensive damage, and economic losses exceeding 200 crore, necessitating the evacuation of over 4 million individuals. As we write this paper Assam again going through immense flooding situation in now i.e. June2023. Due to the limitations of deterministic numerical weather models in accurately forecasting these events, the study explores the incorporation of deep learning (DL) models, specifically U-Nets, using simulated daily accumulated rainfall outputs from various parametrization schemes. Over a four-day period in June 2022, the U-Net based model demonstrated superior skills in predicting rainfall at the district scale, achieving a Mean Absolute Error (MAE) of less than 12mm, outperforming individual and ensemble model outputs. Comparing the DL model's performance to the Weather Research and Forecasting (WRF) forecasts, it exhibited a remarkable 64.78% reduction in MAE across Assam. Notably, the proposed model accurately predicted HREs in specific districts such as Barpeta, Kamrup, Kokrajhar, and Nalbari, showcasing improved spatial variation compared to the WRF model. The DL model's predictions aligned with actual rainfall (> 150 mm) observations from the India Meteorological Department (IMD), while the WRF forecasts consistently underestimated rainfall intensity (< 100 mm). Furthermore, the proposed model achieved a high prediction accuracy of 77.9% in categorical rainfall prediction, significantly outperforming the WRF schemes by 38.1%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Daodao完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
深情丸子发布了新的文献求助10
4秒前
5秒前
风趣绮烟发布了新的文献求助10
6秒前
Daodao发布了新的文献求助10
6秒前
10秒前
南京喵科大学完成签到,获得积分10
11秒前
丘比特应助简绮采纳,获得10
12秒前
厚朴应助蓝莓西西果冻采纳,获得10
13秒前
大模型应助风趣绮烟采纳,获得100
19秒前
jojo完成签到 ,获得积分10
21秒前
22秒前
俊逸的问薇完成签到 ,获得积分10
25秒前
31秒前
33秒前
独特的蛋挞完成签到,获得积分10
34秒前
学术laji发布了新的文献求助10
36秒前
简绮发布了新的文献求助10
39秒前
43秒前
青春完成签到,获得积分10
44秒前
大芳儿发布了新的文献求助10
44秒前
青春发布了新的文献求助10
47秒前
48秒前
48秒前
49秒前
RoboSAMA发布了新的文献求助20
53秒前
LXZ发布了新的文献求助10
54秒前
hoy发布了新的文献求助10
55秒前
卷卷完成签到 ,获得积分10
56秒前
zhonglv7应助小黑黑采纳,获得10
56秒前
脑洞疼应助东方越彬采纳,获得10
56秒前
Jodie发布了新的文献求助10
57秒前
浮游应助孙乐777采纳,获得10
1分钟前
简绮完成签到 ,获得积分10
1分钟前
1分钟前
EMMA完成签到,获得积分10
1分钟前
光亮雨完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557746
求助须知:如何正确求助?哪些是违规求助? 4642805
关于积分的说明 14669158
捐赠科研通 4584228
什么是DOI,文献DOI怎么找? 2514701
邀请新用户注册赠送积分活动 1488877
关于科研通互助平台的介绍 1459555