计算机科学
人工智能
模糊逻辑
特征选择
随机森林
模式识别(心理学)
数据挖掘
机器学习
作者
Xiao-Ming Yu,Wenxiang Qin,Xiao Lin,Zhuohan Shan,Liyao Huang,Qike Shao,Liangxing Wang,Mayun Chen
标识
DOI:10.1016/j.compbiomed.2023.107408
摘要
Pulmonary hypertension (PH) is an uncommon yet severe condition characterized by sustained elevation of blood pressure in the pulmonary arteries. The delaying treatment can result in disease progression, right ventricular failure, increased risk of complications, and even death. Early recognition and timely treatment are crucial in halting PH progression, improving cardiac function, and reducing complications. Within this study, we present a highly promising hybrid model, known as bERIME_FKNN, which constitutes a feature selection approach integrating the enhanced rime algorithm (ERIME) and fuzzy K-nearest neighbor (FKNN) technique. The ERIME introduces the triangular game search strategy, which augments the algorithm's capacity for global exploration by judiciously electing distinct search agents across the exploratory domain. This approach fosters both competitive rivalry and collaborative synergy among these agents. Moreover, an random follower search strategy is incorporated to bestow a novel trajectory upon the principal search agent, thereby enriching the spectrum of search directions. Initially, ERIME is meticulously compared to 11 state-of-the-art algorithms using the IEEE CEC2017 benchmark functions across diverse dimensionalities such as 10, 30, 50, and 100, ultimately validating its exceptional optimization capability within the model. Subsequently, employing the color moment and grayscale co-occurrence matrix methodologies, a total of 118 features are extracted from 63 PH patients' and 60 healthy individuals' images, alongside an analysis of 14,514 recordings obtained from these patients utilizing the developed bERIME_FKNN model. The outcomes manifest that the bERIME_FKNN model exhibits a conspicuous prowess in the realm of PH classification, attaining an accuracy and specificity exceeding 99%. This implies that the model serves as a valuable computer-aided tool, delivering an advanced warning system for diagnosis and prognosis evaluation of PH.
科研通智能强力驱动
Strongly Powered by AbleSci AI