Synergizing the enhanced RIME with fuzzy K-nearest neighbor for diagnose of pulmonary hypertension

计算机科学 人工智能 模糊逻辑 特征选择 随机森林 模式识别(心理学) 数据挖掘 机器学习
作者
Xiao-Ming Yu,Wenxiang Qin,Xiao Lin,Zhuohan Shan,Liyao Huang,Qike Shao,Liangxing Wang,Mayun Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107408-107408 被引量:44
标识
DOI:10.1016/j.compbiomed.2023.107408
摘要

Pulmonary hypertension (PH) is an uncommon yet severe condition characterized by sustained elevation of blood pressure in the pulmonary arteries. The delaying treatment can result in disease progression, right ventricular failure, increased risk of complications, and even death. Early recognition and timely treatment are crucial in halting PH progression, improving cardiac function, and reducing complications. Within this study, we present a highly promising hybrid model, known as bERIME_FKNN, which constitutes a feature selection approach integrating the enhanced rime algorithm (ERIME) and fuzzy K-nearest neighbor (FKNN) technique. The ERIME introduces the triangular game search strategy, which augments the algorithm's capacity for global exploration by judiciously electing distinct search agents across the exploratory domain. This approach fosters both competitive rivalry and collaborative synergy among these agents. Moreover, an random follower search strategy is incorporated to bestow a novel trajectory upon the principal search agent, thereby enriching the spectrum of search directions. Initially, ERIME is meticulously compared to 11 state-of-the-art algorithms using the IEEE CEC2017 benchmark functions across diverse dimensionalities such as 10, 30, 50, and 100, ultimately validating its exceptional optimization capability within the model. Subsequently, employing the color moment and grayscale co-occurrence matrix methodologies, a total of 118 features are extracted from 63 PH patients' and 60 healthy individuals' images, alongside an analysis of 14,514 recordings obtained from these patients utilizing the developed bERIME_FKNN model. The outcomes manifest that the bERIME_FKNN model exhibits a conspicuous prowess in the realm of PH classification, attaining an accuracy and specificity exceeding 99%. This implies that the model serves as a valuable computer-aided tool, delivering an advanced warning system for diagnosis and prognosis evaluation of PH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谷曼婷发布了新的文献求助10
1秒前
从容前行发布了新的文献求助10
3秒前
满意茹嫣发布了新的文献求助10
3秒前
GGGrigor完成签到,获得积分10
5秒前
6秒前
10秒前
小橘子发布了新的文献求助10
11秒前
111完成签到,获得积分10
12秒前
典雅之云完成签到,获得积分10
12秒前
hqq发布了新的文献求助10
13秒前
Ruuo616完成签到 ,获得积分10
15秒前
李健的小迷弟应助耶瑟儿采纳,获得10
16秒前
16秒前
orixero应助dsv采纳,获得10
16秒前
18秒前
SciGPT应助JPH1990采纳,获得10
18秒前
18秒前
wly发布了新的文献求助10
19秒前
19秒前
FashionBoy应助sinohan采纳,获得10
20秒前
哈哈哈哈发布了新的文献求助10
20秒前
sour发布了新的文献求助10
23秒前
24秒前
Spike发布了新的文献求助10
24秒前
cabbage完成签到,获得积分10
24秒前
超帅寻双发布了新的文献求助10
25秒前
感性的夜玉完成签到,获得积分10
26秒前
英俊的铭应助滴滴采纳,获得10
26秒前
dsv完成签到,获得积分10
27秒前
TIGun发布了新的文献求助10
27秒前
谜语完成签到,获得积分10
28秒前
美满的砖头完成签到 ,获得积分10
28秒前
李健的小迷弟应助ly采纳,获得10
29秒前
wly完成签到,获得积分20
29秒前
哈哈发布了新的文献求助10
29秒前
30秒前
晗晗完成签到 ,获得积分10
30秒前
31秒前
隐形曼青应助lunan采纳,获得10
31秒前
planto发布了新的文献求助10
34秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3715030
求助须知:如何正确求助?哪些是违规求助? 3262121
关于积分的说明 9922787
捐赠科研通 2975872
什么是DOI,文献DOI怎么找? 1632015
邀请新用户注册赠送积分活动 774248
科研通“疑难数据库(出版商)”最低求助积分说明 744785