Synergizing the enhanced RIME with fuzzy K-nearest neighbor for diagnose of pulmonary hypertension

计算机科学 人工智能 模糊逻辑 特征选择 随机森林 模式识别(心理学) 数据挖掘 机器学习
作者
Xiao-Ming Yu,Wenxiang Qin,Xiao Lin,Zhuohan Shan,Liyao Huang,Qike Shao,Liangxing Wang,Mayun Chen
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107408-107408 被引量:40
标识
DOI:10.1016/j.compbiomed.2023.107408
摘要

Pulmonary hypertension (PH) is an uncommon yet severe condition characterized by sustained elevation of blood pressure in the pulmonary arteries. The delaying treatment can result in disease progression, right ventricular failure, increased risk of complications, and even death. Early recognition and timely treatment are crucial in halting PH progression, improving cardiac function, and reducing complications. Within this study, we present a highly promising hybrid model, known as bERIME_FKNN, which constitutes a feature selection approach integrating the enhanced rime algorithm (ERIME) and fuzzy K-nearest neighbor (FKNN) technique. The ERIME introduces the triangular game search strategy, which augments the algorithm's capacity for global exploration by judiciously electing distinct search agents across the exploratory domain. This approach fosters both competitive rivalry and collaborative synergy among these agents. Moreover, an random follower search strategy is incorporated to bestow a novel trajectory upon the principal search agent, thereby enriching the spectrum of search directions. Initially, ERIME is meticulously compared to 11 state-of-the-art algorithms using the IEEE CEC2017 benchmark functions across diverse dimensionalities such as 10, 30, 50, and 100, ultimately validating its exceptional optimization capability within the model. Subsequently, employing the color moment and grayscale co-occurrence matrix methodologies, a total of 118 features are extracted from 63 PH patients' and 60 healthy individuals' images, alongside an analysis of 14,514 recordings obtained from these patients utilizing the developed bERIME_FKNN model. The outcomes manifest that the bERIME_FKNN model exhibits a conspicuous prowess in the realm of PH classification, attaining an accuracy and specificity exceeding 99%. This implies that the model serves as a valuable computer-aided tool, delivering an advanced warning system for diagnosis and prognosis evaluation of PH.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静的十八完成签到,获得积分20
2秒前
4秒前
SciGPT应助乔乔采纳,获得30
5秒前
5秒前
研友Bn发布了新的文献求助10
6秒前
李健的粉丝团团长应助Yuan采纳,获得10
7秒前
5度转角应助wen采纳,获得10
7秒前
英姑应助wen采纳,获得10
7秒前
Hello应助liangyichong采纳,获得20
8秒前
李健应助糕糕采纳,获得10
9秒前
10秒前
左丘山河发布了新的文献求助10
11秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
15秒前
16秒前
gwen发布了新的文献求助10
19秒前
wukong完成签到,获得积分10
19秒前
养猪人完成签到,获得积分10
20秒前
斯文败类应助watmes采纳,获得10
29秒前
2568269431完成签到 ,获得积分10
31秒前
33秒前
眯眯眼的衬衫应助qin采纳,获得10
33秒前
庄冬丽发布了新的文献求助10
33秒前
38秒前
123发布了新的文献求助10
41秒前
zhhr完成签到,获得积分10
49秒前
ding应助宝宝烤面包采纳,获得10
49秒前
49秒前
50秒前
杨a发布了新的文献求助10
51秒前
WW完成签到 ,获得积分10
52秒前
53秒前
wdddllll发布了新的文献求助10
54秒前
南枝发布了新的文献求助10
55秒前
56秒前
庄冬丽完成签到,获得积分10
56秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3387136
求助须知:如何正确求助?哪些是违规求助? 3000059
关于积分的说明 8788887
捐赠科研通 2685837
什么是DOI,文献DOI怎么找? 1471290
科研通“疑难数据库(出版商)”最低求助积分说明 680200
邀请新用户注册赠送积分活动 672900