人工神经网络
参数统计
计算机科学
微波食品加热
滤波器(信号处理)
参数化模型
计算
波导管
算法
组分(热力学)
波导滤波器
控制理论(社会学)
数学
原型滤波器
滤波器设计
人工智能
物理
电信
光学
统计
控制(管理)
计算机视觉
热力学
作者
Shuting Jin,Wei Zhang,Zhiguo Zhang,Weicong Na,Yuying Liu,Yiqi Yang
出处
期刊:2018 IEEE MTT-S International Wireless Symposium (IWS)
日期:2023-05-14
卷期号:: 1-3
标识
DOI:10.1109/iws58240.2023.10222586
摘要
This paper introduces an advanced model for microwave components using the Derivatives-Analysis-Assisted Adjoint Neural-Network (DAANN) technique. The proposed technique simultaneously trains input-output behavior of the microwave component and electromagnetic (EM) simulation derivatives to obtain a robust parametric model. Exact first and second-order derivatives of general multilayer neural-network structures are calculated to adjust the weights of DAANN, ensuring accurate output results. New formulations have been derived for the computation of second-order derivatives. The DAANN structure provides more accurate and generalized parametric models with less training data compared to existing artificial neural network (ANN) structures. This technique is demonstrated to be valid through an example of a four-pole waveguide filter.
科研通智能强力驱动
Strongly Powered by AbleSci AI