Indoor radon interval prediction in the Swedish building stock using machine learning

环境科学 人工神经网络 梯度升压 计算机科学 机器学习 随机森林 量子力学 物理
作者
Pei-Yu Wu,Tim Johansson,Claes Sandels,Mikael Mangold,Kristina Mjörnell
出处
期刊:Building and Environment [Elsevier]
卷期号:245: 110879-110879 被引量:2
标识
DOI:10.1016/j.buildenv.2023.110879
摘要

Indoor radon represents a health hazard for occupants. However, the indoor radon measurement rate is low in Sweden because of no mandatory requirements. Measuring indoor radon on an urban scale is complicated, machine learning exploiting existing data for pattern identification provides a cost-efficient approach to estimate indoor radon exposure in the building stock. Extreme gradient boosting (XGBoost) models and deep neural network (DNN) models were developed based on indoor radon measurement records, property registers, and geogenic information. The XGBoost models showed promising results in predicting indoor radon intervals for different types of buildings with macro-F1 between 0.93 and 0.96, whereas the DNN models attained macro-F1 between 0.64 and 0.74. After that, the XGBoost models trained on the national indoor radon dataset were transferred to fit building registers in metropolitan regions to estimate the indoor radon intervals in non-measured and measured buildings by regions and building classes. By comparing the prediction results and the statistical summary of indoor radon intervals in measured buildings, the model uncertainty and validity were determined. The study ascertains the prediction performance of machine learning models in classifying indoor radon intervals and discusses the benefits and limitations of the data-driven approach. The research outcomes can assist preliminary large-scale indoor radon distribution estimation for relevant authorities and guide onsite measurements for prioritized building stock prone to indoor radon exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaomi发布了新的文献求助10
2秒前
2秒前
3秒前
小二郎应助激昂的南烟采纳,获得10
3秒前
像猫的狗发布了新的文献求助10
4秒前
xiaoGuo完成签到,获得积分10
4秒前
风趣的南霜完成签到,获得积分10
4秒前
208225发布了新的文献求助10
7秒前
loong完成签到,获得积分10
7秒前
FashionBoy应助南顾笙烟采纳,获得10
8秒前
8秒前
9秒前
岩下松风完成签到,获得积分10
9秒前
体贴的菀发布了新的文献求助10
9秒前
自由寻菱完成签到 ,获得积分10
9秒前
10秒前
10秒前
研友_VZG7GZ应助SZH采纳,获得10
10秒前
10秒前
冯冯申博了么完成签到,获得积分10
11秒前
何公主完成签到,获得积分10
11秒前
11秒前
顾矜应助勤恳的小笼包采纳,获得10
12秒前
nana完成签到,获得积分10
13秒前
小烟花发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助Jtiger采纳,获得10
13秒前
无花果应助LIFE2020采纳,获得10
14秒前
boom发布了新的文献求助10
15秒前
飞在夏夜的猫完成签到,获得积分10
15秒前
高高尔容完成签到 ,获得积分10
15秒前
赘婿应助清脆松采纳,获得10
15秒前
朴实山兰发布了新的文献求助10
17秒前
17秒前
8R60d8完成签到,获得积分0
18秒前
zasideler完成签到,获得积分10
19秒前
19秒前
小烟花完成签到,获得积分10
20秒前
20秒前
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458472
求助须知:如何正确求助?哪些是违规求助? 3053308
关于积分的说明 9035789
捐赠科研通 2742591
什么是DOI,文献DOI怎么找? 1504422
科研通“疑难数据库(出版商)”最低求助积分说明 695256
邀请新用户注册赠送积分活动 694454