Intermediary-Guided Bidirectional Spatial–Temporal Aggregation Network for Video-Based Visible-Infrared Person Re-Identification

计算机科学 一般化 空间分析 人工智能 鉴定(生物学) 模式识别(心理学) 数学 植物 生物 统计 数学分析
作者
Huafeng Li,Minghui Liu,Zhanxuan Hu,Feiping Nie,Zhengtao Yu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (9): 4962-4972 被引量:10
标识
DOI:10.1109/tcsvt.2023.3246091
摘要

This work focuses on the task of Video-based Visible-Infrared Person Re-Identification, a promising technique for achieving 24-hour surveillance systems. Two main issues in this field are modality discrepancy mitigating and spatial–temporal information mining. In this work, we propose a novel method, named Intermediary-guided Bidirectional spatial–temporal Aggregation Network (IBAN), to address both issues at once. Specifically, IBAN is designed to learn modality-irrelevant features by leveraging the anaglyph data of pedestrian images to serve as the intermediary. Furthermore, a bidirectional spatial–temporal aggregation module is introduced to exploit the spatial–temporal information of video data, while mitigating the impact of noisy image frames. Finally, we design an Easy-sample-based loss to guide the final embedding space and further improve the model's generalization performance. Extensive experiments on Video-based Visible-Infrared benchmarks show that IBAN achieves promising results and outperforms the state-of-the-art ReID methods by a large margin, improving the rank-1/mAP by $1.29\%/3.46\%$ at the Infrared to Visible situation, and by $5.04\%/3.27\%$ at the Visible to Infrared situation. The source code of the proposed method will be released at https://github.com/lhf12278/IBAN .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宋桉发布了新的文献求助10
刚刚
1秒前
1秒前
眯眯眼的代丝完成签到,获得积分10
1秒前
ding应助艺术大师采纳,获得10
1秒前
合适惜筠发布了新的文献求助10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得30
2秒前
无花果应助科研通管家采纳,获得10
3秒前
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
1+1应助科研通管家采纳,获得10
3秒前
3秒前
kkkkkkk_应助科研通管家采纳,获得10
3秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
3秒前
无花果应助euphoria采纳,获得10
3秒前
老苍完成签到,获得积分10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
5433发布了新的文献求助10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
lalala应助科研通管家采纳,获得20
3秒前
欢喜怀绿完成签到,获得积分10
4秒前
4秒前
神勇秋白完成签到,获得积分0
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得20
4秒前
4秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206210
求助须知:如何正确求助?哪些是违规求助? 2855622
关于积分的说明 8100302
捐赠科研通 2520593
什么是DOI,文献DOI怎么找? 1353618
科研通“疑难数据库(出版商)”最低求助积分说明 641806
邀请新用户注册赠送积分活动 612874