亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DLMC-Net: Deeper lightweight multi-class classification model for plant leaf disease detection

计算机科学 卷积神经网络 人工智能 植物病害 特征(语言学) F1得分 机器学习 卷积(计算机科学) 深度学习 人工神经网络 数据挖掘 模式识别(心理学) 生物技术 语言学 哲学 生物
作者
Vivek Sharma,Ashish Kumar Tripathi,Himanshu Mittal
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:75: 102025-102025 被引量:77
标识
DOI:10.1016/j.ecoinf.2023.102025
摘要

Plant-leaf disease detection is one of the key problems of smart agriculture which has a significant impact on the global economy. To mitigate this, intelligent agricultural solutions are evolving that aid farmer to take preventive measures for improving crop production. With the advancement of deep learning, many convolutional neural network models have blazed their way to the identification of plant-leaf diseases. However, these models are limited to the detection of specific crops only. Therefore, this paper presents a new deeper lightweight convolutional neural network architecture (DLMC-Net) to perform plant leaf disease detection across multiple crops for real-time agricultural applications. In the proposed model, a sequence of collective blocks is introduced along with the passage layer to extract deep features. These benefits in feature propagation and feature reuse, which results in handling the vanishing gradient problem. Moreover, point-wise and separable convolution blocks are employed to reduce the number of trainable parameters. The efficacy of the proposed DLMC-Net model is validated across four publicly available datasets, namely citrus, cucumber, grapes, and tomato. Experimental results of the proposed model are compared against seven state-of-the-art models on eight parameters, namely accuracy, error, precision, recall, sensitivity, specificity, F1-score, and Matthews correlation coefficient. Experiments demonstrate that the proposed model has surpassed all the considered models, even under complex background conditions, with an accuracy of 93.56%, 92.34%, 99.50%, and 96.56% on citrus, cucumber, grapes, and tomato, respectively. Moreover, the proposed DLMC-Net requires only 6.4 million trainable parameters, which is the second best among the compared models. Therefore, it can be asserted that the proposed model is a viable alternative to perform plant leaf disease detection across multiple crops.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧伤的绍辉完成签到 ,获得积分10
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
18秒前
24秒前
30秒前
量子星尘发布了新的文献求助10
39秒前
48秒前
量子星尘发布了新的文献求助10
54秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
NexusExplorer应助X1x1A0Q1采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
X1x1A0Q1发布了新的文献求助10
1分钟前
1分钟前
桐桐应助lzzj采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
lzzj发布了新的文献求助10
2分钟前
2分钟前
小巫发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
坚强白凝发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
传奇3应助坚强白凝采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666402
求助须知:如何正确求助?哪些是违规求助? 3225444
关于积分的说明 9762998
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188