Distant supervision for relation extraction with hierarchical attention-based networks

判决 计算机科学 关系抽取 特征(语言学) 人工智能 噪音(视频) 关系(数据库) 代表(政治) 自然语言处理 文字袋模型 机器学习 模式识别(心理学) 信息抽取 数据挖掘 哲学 法学 图像(数学) 政治 语言学 政治学
作者
Jing Zhang,Meilin Cao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:220: 119727-119727 被引量:6
标识
DOI:10.1016/j.eswa.2023.119727
摘要

Distant supervision employs external knowledge bases to automatically label corpora. The labeled sentences in a corpus are usually packaged and trained for relation extraction using a multi-instance learning paradigm. The automated distant supervision inevitably introduces label noises. Previous studies that used sentence-level attention mechanisms to de-noise neither considered correlation among sentences in a bag nor correlation among bags. As a result, a large amount of effective supervision information is lost, which will affect the performance of learned relation extraction models. Moreover, these methods ignore the lack of feature information in the few-sentence bags (especially the one-sentence bags). To address these issues, this paper proposes hierarchical attention-based networks that can de-noise at both sentence and bag levels. In the calculation of bag representation, we provide weights to sentence representations using sentence-level attention that considers correlations among sentences in each bag. Then, we employ bag-level attention to combine the similar bags by considering their correlations, which can enhance the feature of target bags with poor feature information, and to provide properer weights in the calculation of bag group representation. Both sentence-level attention and bag-level attention can make full use of supervised information to improve model performance. The proposed method was compared with nine state-of-the-art methods on the New York Times datasets and Google IISc Distant Supervision dataset, respectively, whose experimental results show its conspicuous advantages in relation extraction tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默又槐完成签到,获得积分20
刚刚
天天快乐应助Meteor采纳,获得10
刚刚
小左完成签到,获得积分10
刚刚
PhD_Essence发布了新的文献求助10
1秒前
科研通AI2S应助remix采纳,获得10
1秒前
1秒前
情怀应助勤劳访烟采纳,获得10
1秒前
BowieHuang应助余柳采纳,获得10
1秒前
认真乐双发布了新的文献求助10
2秒前
大傻春发布了新的文献求助10
2秒前
田様应助yongfeng采纳,获得10
2秒前
好好好完成签到,获得积分10
2秒前
3秒前
夏蓉完成签到,获得积分10
3秒前
在水一方应助prode采纳,获得10
3秒前
4秒前
复杂的箴完成签到,获得积分10
6秒前
czw完成签到,获得积分10
6秒前
Y_Jfeng发布了新的文献求助10
7秒前
7秒前
王火火完成签到,获得积分20
7秒前
田様应助PhD_Essence采纳,获得10
8秒前
无极微光应助袁震的爹爹采纳,获得20
8秒前
苒苒发布了新的文献求助10
8秒前
勤恳雅莉应助ppttaabb采纳,获得30
8秒前
懦弱的南蕾完成签到,获得积分10
8秒前
斯文败类应助裴崎采纳,获得10
9秒前
9秒前
10秒前
浮浮世世发布了新的文献求助30
10秒前
remix完成签到,获得积分10
11秒前
Lucas应助zhouleiwang采纳,获得10
11秒前
所所应助123采纳,获得10
11秒前
CodeCraft应助junzilan采纳,获得10
11秒前
可靠猎豹完成签到,获得积分10
11秒前
12秒前
12秒前
C胖胖完成签到,获得积分10
13秒前
李健应助王火火采纳,获得10
13秒前
英俊的铭应助嘻嘻采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396