An integrated nomogram combining deep learning, clinical characteristics and ultrasound features for predicting central lymph node metastasis in papillary thyroid cancer: A multicenter study

列线图 医学 甲状腺乳突癌 逻辑回归 放射科 队列 超声波 甲状腺癌 肿瘤科 内科学 癌症
作者
Luchen Chang,Yanqiu Zhang,Jialin Zhu,Linfei Hu,Xiaoqing Wang,Haozhi Zhang,Qing Gu,Xiaoyu Chen,Sheng Zhang,Ming Gao,Xi Wei
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14 被引量:20
标识
DOI:10.3389/fendo.2023.964074
摘要

Central lymph node metastasis (CLNM) is a predictor of poor prognosis for papillary thyroid carcinoma (PTC) patients. The options for surgeon operation or follow-up depend on the state of CLNM while accurate prediction is a challenge for radiologists. The present study aimed to develop and validate an effective preoperative nomogram combining deep learning, clinical characteristics and ultrasound features for predicting CLNM.In this study, 3359 PTC patients who had undergone total thyroidectomy or thyroid lobectomy from two medical centers were enrolled. The patients were divided into three datasets for training, internal validation and external validation. We constructed an integrated nomogram combining deep learning, clinical characteristics and ultrasound features using multivariable logistic regression to predict CLNM in PTC patients.Multivariate analysis indicated that the AI model-predicted value, multiple, position, microcalcification, abutment/perimeter ratio and US-reported LN status were independent risk factors predicting CLNM. The area under the curve (AUC) for the nomogram to predict CLNM was 0.812 (95% CI, 0.794-0.830) in the training cohort, 0.809 (95% CI, 0.780-0.837) in the internal validation cohort and 0.829(95%CI, 0.785-0.872) in the external validation cohort. Based on the analysis of the decision curve, our integrated nomogram was superior to other models in terms of clinical predictive ability.Our proposed thyroid cancer lymph node metastasis nomogram shows favorable predictive value to assist surgeons in making appropriate surgical decisions in PTC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jinyu完成签到,获得积分10
刚刚
2秒前
霓娜酱发布了新的文献求助10
2秒前
3秒前
cwq完成签到 ,获得积分10
3秒前
漫天繁星发布了新的文献求助10
3秒前
5秒前
科研通AI2S应助驿寄梅花采纳,获得10
5秒前
5秒前
5秒前
mmm应助alone采纳,获得10
6秒前
6秒前
8秒前
跟屁虫完成签到,获得积分10
9秒前
妮妮完成签到,获得积分10
9秒前
xuxingjie发布了新的文献求助10
10秒前
张先伟完成签到,获得积分10
10秒前
10秒前
10秒前
hj456完成签到,获得积分10
10秒前
11秒前
Zcm关注了科研通微信公众号
12秒前
fanqinge完成签到,获得积分20
13秒前
我是老大应助谦让友绿采纳,获得10
13秒前
yuhong完成签到,获得积分10
14秒前
14秒前
稳重的愫发布了新的文献求助10
14秒前
英姑应助Cherrita采纳,获得10
16秒前
17秒前
大模型应助知性的千秋采纳,获得10
17秒前
Goldfish完成签到,获得积分10
17秒前
隐形曼青应助俊秀的夏柳采纳,获得10
19秒前
今后应助忘忧Aquarius采纳,获得10
20秒前
zheyu完成签到,获得积分10
20秒前
大创关注了科研通微信公众号
21秒前
谦让友绿完成签到,获得积分10
21秒前
22秒前
22秒前
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308145
求助须知:如何正确求助?哪些是违规求助? 2941687
关于积分的说明 8504876
捐赠科研通 2616322
什么是DOI,文献DOI怎么找? 1429586
科研通“疑难数据库(出版商)”最低求助积分说明 663807
邀请新用户注册赠送积分活动 648793