已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Blood transcriptome analysis revealed the crosstalk between severe COVID-19 and systemic lupus erythematosus

上睑下垂 炎症体 医学 2019年冠状病毒病(COVID-19) 免疫学 内科学 疾病 炎症 传染病(医学专业)
作者
Ruogang Meng,Ning Zhang,Feixiang Yang,Zhihao Xu,Zhengyang Wu,Yinan Du
出处
期刊:Journal of Infection [Elsevier BV]
卷期号:86 (4): e104-e106 被引量:1
标识
DOI:10.1016/j.jinf.2023.02.011
摘要

Dear editor, We have read with great interest the article by Cui et al. that previously reported the correlation between high inflammasome expression and pyroptosis with severe COVID-19 infection in cancer patients.1Cui H. Liu J. Zhang L. The high expression of key components of inflammasome and pyroptosis might lead to severe COVID-19 infection in cancer patients.J Infect. 2022; 84: e19-e21Abstract Full Text Full Text PDF PubMed Scopus (2) Google Scholar We noticed that activation of inflammasome and pyroptosis also function in systemic lupus erythematosus (SLE).2Kong R. Sun L. Li H. Wang D. The role of NLRP3 inflammasome in the pathogenesis of rheumatic disease.Autoimmunity. 2022; 55: 1-7Crossref PubMed Scopus (17) Google Scholar, 3Shin J.I. Lee K.H. Joo Y.H. Lee J.M. Jeon J. Jung H.J. et al.Inflammasomes and autoimmune and rheumatic diseases: a comprehensive review.J Autoimmun. 2019; 103102299Crossref PubMed Scopus (59) Google Scholar Recently, several studies have reported that patients with SLE might have a higher risk of severe COVID-19, and the risk of SLE was substantially higher in COVID-19 individuals.4Ugarte-Gil M.F. Alarcón G.S. Izadi Z. Duarte-García A. Reátegui-Sokolova C. Clarke A.E. et al.Characteristics associated with poor COVID-19 outcomes in individuals with systemic lupus erythematosus: data from the COVID-19 Global Rheumatology Alliance.Ann Rheum Dis. 2022; 81: 970-978Crossref PubMed Scopus (31) Google Scholar, 5Chang R. Yen-Ting Chen T. Wang S.-I. Hung Y.-M. Chen H.-Y. Wei C.-C.J. Risk of autoimmune diseases in patients with COVID-19: a retrospective cohort study.EClinicalMedicine. 2023; 56101783Abstract Full Text Full Text PDF Scopus (7) Google Scholar, 6Yang H. Xu J. Liang X. Shi L. Wang Y. Autoimmune diseases are independently associated with COVID-19 severity: evidence based on adjusted effect estimates.J Infect. 2021; 82: e23-e26Abstract Full Text Full Text PDF PubMed Scopus (16) Google Scholar Severe COVID-19 and SLE seem to have a strong connection; however, the potential molecular mechanisms are unclear. In this study, we used blood transcriptome analysis to explore the potential mechanisms and key genes hiding in the crosstalk between severe COVID-19 and SLE. Two severe COVID-19 datasets (GSE164805 and GSE171110) and one SLE dataset (GSE45291) were downloaded from the Gene Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/) and then analyzed. We selected 4920 differentially expressed genes (DEGs), including 2310 upregulated genes and 2610 downregulated genes, from 54 patients suffering from severe COVID-19 (Fig. 1A). Furthermore, a total of 1448 DEGs, including 377 upregulated genes and 694 downregulated genes, were identified from 292 SLE patients (Fig. 1B). We then took the intersection of the selected DEGs, and a total of 272 genes were obtained (Fig. 1C). To reveal the potential functions of those DEGs, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. For enrichment of GO terms, the shared DEGs were mainly involved in the immune system process, multi-organism pathway, immune response, and transcription factor binding and related to cytosol and mitochondrion (Fig. 1D). For KEGG pathway enrichment analysis, the top five significant pathways were Cytokine-cytokine receptor interaction, influenza A, Th17 cell differentiation, Epstein-Barr virus infection, and ribosome (Fig. 1E). To further identify key genes affecting the interactions between severe COVID-19 and SLE, we used STRING (https://string-db.org/) and Cytoscape to screen the top 20 hub genes using six topological algorithms of the plugin CytoHubba and obtained their intersection (Fig. 2A). The final 17 hub genes included IFIT3, RSAD2, IFIT1, IFI44L, IFI44, OAS3, OAS1, OAS2, IFIT2, IFI35, OASL, IFI27, IFIT5, XAF1, USP18, HERC5, and EIF2AK2. GO enrichment analysis showed that these genes functioned in the defense response, innate immune response, biotic stimulus response, and infection response, and were mainly related to the cytosol and RNA binding (Fig. 2B). KEGG pathway enrichment analysis revealed that these genes were mainly involved in immune- and infection-related pathways such as Hepatitis C and NOD-like receptor signaling pathways (Fig. 2C). In addition, we verified the expression of these 17 DEGs in the severe COVID-19 and SLE datasets. Interestingly, all these key genes were significantly highly expressed in both the severe COVID-19 cohorts and the SLE cohort compared to those in healthy individuals (Fig. 2D and E). Furthermore, we constructed a transcription factor (TF)-miRNA-hub gene network to present potential regulatory mechanisms by NetworkAnalyst.7Zhou G. Soufan O. Ewald J. Hancock R.E.W. Basu N. Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis.Nucleic Acids Res. 2019; 47: W234-W241Crossref PubMed Scopus (732) Google Scholar The network consists of 72 nodes and 78 edges, including 41 TFs, 21 miRNAs, and 10 key genes (Fig. 2F). Our work identified some key genes and presented molecular mechanisms of the correlation between severe COVID-19 and SLE. Notably, most selected genes belong to interferon-induced proteins with tetratricopeptide repeats (IFITs) or oligoadenylate synthetase (OAS) gene families. IFITs and OAS gene families are both induced by Interferons (IFNs), participate in regulating innate immune response, and play antiviral functions.8Hornung V. Hartmann R. Ablasser A. Hopfner K.-P. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids.Nat Rev Immunol. 2014; 14: 521-528Crossref PubMed Scopus (188) Google Scholar, 9Zhou X. Michal J.J. Zhang L. Ding B. Lunney J.K. Liu B. et al.Interferon induced IFIT family genes in host antiviral defense.Int J Biol Sci. 2013; 9: 200-208Crossref PubMed Scopus (155) Google Scholar Previous research has proven that IFNs and the innate immune response are involved in the progression of COVID-19 and SLE. The dysregulation of IFNs and perturbations in adaptive immune systems, which is prevalent in SLE, may lead to severe COVID-19.10Thanou A. Sawalha A.H. SARS-CoV-2 and systemic lupus erythematosus.Curr Rheumatol Rep. 2021; 23: 8Crossref PubMed Scopus (13) Google Scholar In short, our results revealed potential mechanisms and key biomarkers that contribute to the crosstalk between severe COVID-19 and SLE, which provides new insight into COVID-19 and SLE and contributes to precise diagnosis and treatment. This work was funded by the National College Students’ Innovation and Entrepreneurship Training Program (No. 202210366002) and the College Students’ Innovation and Entrepreneurship Training Program of Anhui Province (No. S202210366021 and S202210366017).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhujh完成签到,获得积分10
3秒前
5秒前
aafrr完成签到 ,获得积分10
7秒前
7秒前
念安发布了新的文献求助10
9秒前
hanhan发布了新的文献求助10
11秒前
华仔应助qcq采纳,获得10
11秒前
14秒前
痴情的明辉完成签到 ,获得积分10
16秒前
可可萝oxo发布了新的文献求助10
20秒前
Jankin完成签到,获得积分10
23秒前
24秒前
小马甲应助hanhan采纳,获得10
24秒前
小羊完成签到 ,获得积分10
28秒前
POPO完成签到 ,获得积分10
30秒前
86发布了新的文献求助10
30秒前
38秒前
现代小丸子完成签到 ,获得积分10
38秒前
Candy2024完成签到 ,获得积分10
38秒前
华仔应助多情的青曼采纳,获得10
39秒前
40秒前
Berthe完成签到 ,获得积分10
42秒前
CodeCraft应助英勇的新瑶采纳,获得10
44秒前
dominate应助KK采纳,获得10
45秒前
45秒前
86完成签到,获得积分10
45秒前
ll应助wdlc采纳,获得20
45秒前
46秒前
qcq发布了新的文献求助10
47秒前
Jennifer发布了新的文献求助10
50秒前
刘思雨发布了新的文献求助10
51秒前
52秒前
英俊的铭应助典雅的俊驰采纳,获得10
53秒前
55秒前
KK完成签到,获得积分10
56秒前
TIWOSS发布了新的文献求助10
58秒前
张若旸发布了新的文献求助20
59秒前
wdlc发布了新的文献求助20
1分钟前
研友_5Y9775发布了新的文献求助10
1分钟前
YHJX发布了新的文献求助10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965433
求助须知:如何正确求助?哪些是违规求助? 3510708
关于积分的说明 11154803
捐赠科研通 3245040
什么是DOI,文献DOI怎么找? 1792779
邀请新用户注册赠送积分活动 874069
科研通“疑难数据库(出版商)”最低求助积分说明 804150