亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A unified method of data assimilation and turbulence modeling for separated flows at high Reynolds numbers

雷诺平均Navier-Stokes方程 湍流 雷诺应力方程模型 雷诺数 物理 湍流模型 Kε湍流模型 翼型 统计物理学 Lift(数据挖掘) 数据同化 应用数学 K-omega湍流模型 机械 经典力学 计算机科学 气象学 数学 机器学习
作者
Zhiyuan Wang,Weiwei Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (2) 被引量:24
标识
DOI:10.1063/5.0136420
摘要

In recent years, machine learning methods represented by deep neural networks (DNNs) have been a new paradigm of turbulence modeling. However, in the scenario of high Reynolds numbers, there are still some bottlenecks, including the lack of high-fidelity data and the stability problem in the coupling process of turbulence models and the Reynolds-averaged Navier–Stokes (RANS) solvers. In this paper, we propose an improved ensemble Kalman inversion method as a unified approach of data assimilation and turbulence modeling for separated flows at high Reynolds numbers. A novel ensemble design method based on transfer learning and a regularizing strategy are proposed to improve the method. The trainable parameters of DNN are optimized according to the given experimental surface pressure coefficients in the framework of mutual coupling between the RANS solvers and DNN eddy viscosity models. In this way, data assimilation and model training are integrated into one step to get the high-fidelity turbulence models agree well with experiments directly. The effectiveness of the method is verified by cases of flows around S809 airfoil at high Reynolds numbers. Through assimilation of few experimental states, we can get turbulence models generalizing well to both attached and separated flows at different angles of attack, which also perform well in stability and robustness. The errors of lift coefficients at high angles of attack are significantly reduced by more than three times compared with the traditional Spalart–Allmaras model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默完成签到 ,获得积分10
1秒前
科研通AI6.1应助转转采纳,获得50
16秒前
53秒前
Criminology34应助科研通管家采纳,获得10
54秒前
赘婿应助科研通管家采纳,获得10
54秒前
hanawang应助科研通管家采纳,获得10
54秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
54秒前
李爱国应助科研通管家采纳,获得30
54秒前
hanawang应助科研通管家采纳,获得10
54秒前
54秒前
Criminology34应助科研通管家采纳,获得10
54秒前
成就念芹完成签到,获得积分10
59秒前
科研通AI6.1应助吱吱采纳,获得10
1分钟前
SciGPT应助章鱼采纳,获得10
1分钟前
1分钟前
1分钟前
章鱼发布了新的文献求助10
1分钟前
1分钟前
1分钟前
转转发布了新的文献求助50
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
andrele发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
hanawang应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764216
求助须知:如何正确求助?哪些是违规求助? 5549135
关于积分的说明 15405999
捐赠科研通 4899537
什么是DOI,文献DOI怎么找? 2635744
邀请新用户注册赠送积分活动 1583892
关于科研通互助平台的介绍 1539034