A unified method of data assimilation and turbulence modeling for separated flows at high Reynolds numbers

雷诺平均Navier-Stokes方程 湍流 雷诺应力方程模型 雷诺数 物理 湍流模型 Kε湍流模型 翼型 统计物理学 Lift(数据挖掘) 数据同化 应用数学 K-omega湍流模型 机械 经典力学 计算机科学 气象学 数学 机器学习
作者
Zhiyuan Wang,Weiwei Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (2) 被引量:24
标识
DOI:10.1063/5.0136420
摘要

In recent years, machine learning methods represented by deep neural networks (DNNs) have been a new paradigm of turbulence modeling. However, in the scenario of high Reynolds numbers, there are still some bottlenecks, including the lack of high-fidelity data and the stability problem in the coupling process of turbulence models and the Reynolds-averaged Navier–Stokes (RANS) solvers. In this paper, we propose an improved ensemble Kalman inversion method as a unified approach of data assimilation and turbulence modeling for separated flows at high Reynolds numbers. A novel ensemble design method based on transfer learning and a regularizing strategy are proposed to improve the method. The trainable parameters of DNN are optimized according to the given experimental surface pressure coefficients in the framework of mutual coupling between the RANS solvers and DNN eddy viscosity models. In this way, data assimilation and model training are integrated into one step to get the high-fidelity turbulence models agree well with experiments directly. The effectiveness of the method is verified by cases of flows around S809 airfoil at high Reynolds numbers. Through assimilation of few experimental states, we can get turbulence models generalizing well to both attached and separated flows at different angles of attack, which also perform well in stability and robustness. The errors of lift coefficients at high angles of attack are significantly reduced by more than three times compared with the traditional Spalart–Allmaras model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
拼搏诗翠发布了新的文献求助10
1秒前
1秒前
aabsd发布了新的文献求助10
3秒前
luck完成签到,获得积分10
4秒前
5秒前
msy1998完成签到,获得积分10
6秒前
pangzh完成签到,获得积分10
7秒前
pluto应助皮念寒采纳,获得10
8秒前
大侠发布了新的文献求助10
8秒前
刁刁完成签到,获得积分20
8秒前
鲁班七号发布了新的文献求助10
9秒前
Danny完成签到,获得积分10
10秒前
zhanghan完成签到,获得积分10
10秒前
renzhen完成签到,获得积分10
11秒前
帕克发布了新的文献求助10
11秒前
power完成签到,获得积分10
12秒前
12秒前
12秒前
酷波er应助酷炫的千秋采纳,获得10
12秒前
12秒前
13秒前
hxm完成签到,获得积分10
13秒前
顺利的白昼完成签到,获得积分20
16秒前
科研通AI5应助简单的烤鸡采纳,获得10
16秒前
棠堂发布了新的文献求助10
16秒前
Tong完成签到,获得积分10
16秒前
雪流星发布了新的文献求助10
17秒前
18秒前
19秒前
隐形盼海发布了新的文献求助10
19秒前
赘婿应助11采纳,获得10
20秒前
皮念寒发布了新的文献求助10
20秒前
20秒前
温水完成签到,获得积分10
21秒前
as发布了新的文献求助10
21秒前
24秒前
可爱的函函应助隐形盼海采纳,获得10
28秒前
明明发布了新的文献求助10
28秒前
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427