A unified method of data assimilation and turbulence modeling for separated flows at high Reynolds numbers

雷诺平均Navier-Stokes方程 湍流 雷诺应力方程模型 雷诺数 物理 湍流模型 Kε湍流模型 翼型 统计物理学 Lift(数据挖掘) 数据同化 应用数学 K-omega湍流模型 机械 经典力学 计算机科学 气象学 数学 机器学习
作者
Zhiyuan Wang,Weiwei Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (2) 被引量:24
标识
DOI:10.1063/5.0136420
摘要

In recent years, machine learning methods represented by deep neural networks (DNNs) have been a new paradigm of turbulence modeling. However, in the scenario of high Reynolds numbers, there are still some bottlenecks, including the lack of high-fidelity data and the stability problem in the coupling process of turbulence models and the Reynolds-averaged Navier–Stokes (RANS) solvers. In this paper, we propose an improved ensemble Kalman inversion method as a unified approach of data assimilation and turbulence modeling for separated flows at high Reynolds numbers. A novel ensemble design method based on transfer learning and a regularizing strategy are proposed to improve the method. The trainable parameters of DNN are optimized according to the given experimental surface pressure coefficients in the framework of mutual coupling between the RANS solvers and DNN eddy viscosity models. In this way, data assimilation and model training are integrated into one step to get the high-fidelity turbulence models agree well with experiments directly. The effectiveness of the method is verified by cases of flows around S809 airfoil at high Reynolds numbers. Through assimilation of few experimental states, we can get turbulence models generalizing well to both attached and separated flows at different angles of attack, which also perform well in stability and robustness. The errors of lift coefficients at high angles of attack are significantly reduced by more than three times compared with the traditional Spalart–Allmaras model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Natua发布了新的文献求助10
刚刚
3秒前
科研通AI2S应助0957采纳,获得10
4秒前
友好的颦关注了科研通微信公众号
5秒前
5秒前
大个应助从容的子轩采纳,获得10
5秒前
6秒前
6秒前
范兆飞发布了新的文献求助10
6秒前
BING完成签到 ,获得积分10
7秒前
hu发布了新的文献求助10
7秒前
舒昀完成签到,获得积分10
8秒前
科目三应助yqy1234采纳,获得10
11秒前
Noctis完成签到,获得积分10
12秒前
Iso发布了新的文献求助10
13秒前
烟花应助ikun采纳,获得10
13秒前
shaneggy完成签到 ,获得积分10
13秒前
ller完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
334niubi666完成签到 ,获得积分10
18秒前
木子完成签到,获得积分10
18秒前
18秒前
桐桐应助sweet凤梨采纳,获得10
19秒前
Lucas应助walalalla采纳,获得10
21秒前
轻松的贞完成签到,获得积分10
21秒前
xftx完成签到,获得积分10
23秒前
24秒前
yqy1234发布了新的文献求助10
25秒前
冬菇拉米关注了科研通微信公众号
25秒前
26秒前
28秒前
科研助手6应助优雅面包采纳,获得10
28秒前
29秒前
GUNIANLIU发布了新的文献求助10
29秒前
29秒前
Natua完成签到,获得积分10
29秒前
包子发布了新的文献求助10
30秒前
30秒前
苯环完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010343
求助须知:如何正确求助?哪些是违规求助? 3550209
关于积分的说明 11305256
捐赠科研通 3284663
什么是DOI,文献DOI怎么找? 1810786
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811451