Application of reinforcement learning in planning and operation of new power system towards carbon peaking and neutrality

强化学习 可再生能源 计算机科学 分布式发电 网格 环境经济学 工程类 人工智能 电气工程 经济 几何学 数学
作者
Fangyuan Sun,Zhiwei Wang,Junhui Huang,Ruisheng Diao,Yingru Zhao,Tu Lan
出处
期刊:Progress in energy [IOP Publishing]
卷期号:5 (1): 012005-012005 被引量:3
标识
DOI:10.1088/2516-1083/acb987
摘要

Abstract To mitigate global climate change and ensure a sustainable energy future, China has launched a new energy policy of achieving carbon peaking by 2030 and carbon neutrality by 2060, which sets an ambitious goal of building NPS with high penetration of renewable energy. However, the strong uncertainty, nonlinearity, and intermittency of renewable generation and their power electronics-based control devices are imposing grand challenges for secure and economic planning and operation of the NPS. The performance of traditional methods and tools becomes rather limited under such phenomena. Together with high-fidelity modeling and high-performance simulation techniques, the fast development of AI technology, especially RL, provides a promising way of tackling these critical issues. This paper first provides a comprehensive overview of RL methods that interact with high-fidelity grid simulators to train effective agents for intelligent, model-free decision-making. Secondly, three important applications of RL are reviewed, including device-level control, system-level optimized control, and demand side management, with detailed modeling and procedures of solution explained. Finally, this paper discusses future research efforts for achieving the goals of full absorption of renewable energy, optimized allocation of large-scale energy resources, reliable supply of electricity, and secure and economic operation of the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
刚刚
Stephanie发布了新的文献求助10
2秒前
口腔飞飞完成签到 ,获得积分10
2秒前
充电宝应助翠翠采纳,获得10
2秒前
雨下着的坡道完成签到,获得积分10
4秒前
lisizheng完成签到,获得积分10
4秒前
科研通AI2S应助汤姆采纳,获得10
5秒前
高磊完成签到,获得积分10
5秒前
WZ0904发布了新的文献求助10
5秒前
Akim应助无情向梦采纳,获得10
5秒前
joey完成签到,获得积分10
6秒前
7秒前
所所应助坚强的樱采纳,获得10
7秒前
8秒前
专注秋尽完成签到,获得积分10
8秒前
我的小伙伴应助lisizheng采纳,获得50
8秒前
9秒前
wait完成签到,获得积分10
9秒前
高磊发布了新的文献求助10
10秒前
10秒前
11秒前
潦草发布了新的文献求助10
11秒前
抵澳报了完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
14秒前
ATAYA发布了新的文献求助10
15秒前
星瑆心发布了新的文献求助10
15秒前
Lazarus_x完成签到,获得积分10
16秒前
whm发布了新的文献求助10
17秒前
豆dou发布了新的文献求助10
19秒前
旭日东升完成签到 ,获得积分10
20秒前
yyyyou完成签到,获得积分10
21秒前
科研通AI5应助xlj采纳,获得10
23秒前
Jenny应助WZ0904采纳,获得10
23秒前
弘一完成签到,获得积分10
23秒前
郑zhenglanyou完成签到 ,获得积分10
24秒前
26秒前
忧子忘完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808