Application of reinforcement learning in planning and operation of new power system towards carbon peaking and neutrality

强化学习 可再生能源 计算机科学 分布式发电 碳中和 网格 环境经济学 工程类 人工智能 电气工程 经济 几何学 数学
作者
Fangyuan Sun,Zhiwei Wang,Junhui Huang,Ruisheng Diao,Yingru Zhao,Tian-Syung Lan
出处
期刊:Progress in energy [IOP Publishing]
卷期号:5 (1): 012005-012005
标识
DOI:10.1088/2516-1083/acb987
摘要

Abstract To mitigate global climate change and ensure a sustainable energy future, China has launched a new energy policy of achieving carbon peaking by 2030 and carbon neutrality by 2060, which sets an ambitious goal of building NPS with high penetration of renewable energy. However, the strong uncertainty, nonlinearity, and intermittency of renewable generation and their power electronics-based control devices are imposing grand challenges for secure and economic planning and operation of the NPS. The performance of traditional methods and tools becomes rather limited under such phenomena. Together with high-fidelity modeling and high-performance simulation techniques, the fast development of AI technology, especially RL, provides a promising way of tackling these critical issues. This paper first provides a comprehensive overview of RL methods that interact with high-fidelity grid simulators to train effective agents for intelligent, model-free decision-making. Secondly, three important applications of RL are reviewed, including device-level control, system-level optimized control, and demand side management, with detailed modeling and procedures of solution explained. Finally, this paper discusses future research efforts for achieving the goals of full absorption of renewable energy, optimized allocation of large-scale energy resources, reliable supply of electricity, and secure and economic operation of the power grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助liao采纳,获得50
刚刚
ds发布了新的文献求助10
刚刚
苏钰发布了新的文献求助10
刚刚
寒冷靖易完成签到,获得积分10
1秒前
zeroyee完成签到,获得积分10
1秒前
2秒前
斯文败类应助等待八宝粥采纳,获得10
2秒前
2秒前
头头的小豆包完成签到,获得积分10
3秒前
整齐冬瓜完成签到,获得积分10
4秒前
姚安白完成签到,获得积分10
4秒前
哈哈哈哈发布了新的文献求助10
4秒前
IANNX完成签到,获得积分10
5秒前
wrx发布了新的文献求助10
5秒前
小吴完成签到,获得积分10
5秒前
6秒前
ryt发布了新的文献求助30
6秒前
7秒前
lmgegege完成签到,获得积分10
7秒前
Owen应助winter采纳,获得10
7秒前
CodeCraft应助橘寄采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
风中的宛白应助YUN采纳,获得10
10秒前
10秒前
swy完成签到 ,获得积分10
10秒前
研友_Ze2k48发布了新的文献求助10
11秒前
打打应助晏紫苏采纳,获得30
11秒前
烟花应助本本采纳,获得30
11秒前
xxx发布了新的文献求助10
12秒前
着急的晓刚完成签到,获得积分10
12秒前
12秒前
小蘑菇应助沉默的若冰采纳,获得10
13秒前
13秒前
13秒前
will发布了新的文献求助10
13秒前
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135677
求助须知:如何正确求助?哪些是违规求助? 2786507
关于积分的说明 7777976
捐赠科研通 2442633
什么是DOI,文献DOI怎么找? 1298612
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600847