Prognostic artificial intelligence model to predict 5 year survival at 1 year after gastric cancer surgery based on nutrition and body morphometry

癌症 癌症手术 医学 外科 人工智能 内科学 计算机科学
作者
Ho Young Chung,Yousun Ko,Beom Su Kim,Hoon Hur,Jimi Huh,Sang‐Uk Han,Kyung Won Kim,Jin‐Seok Lee
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Wiley]
卷期号:14 (2): 847-859 被引量:11
标识
DOI:10.1002/jcsm.13176
摘要

Abstract Background Personalized survival prediction is important in gastric cancer patients after gastrectomy based on large datasets with many variables including time‐varying factors in nutrition and body morphometry. One year after gastrectomy might be the optimal timing to predict long‐term survival because most patients experience significant nutritional change, muscle loss, and postoperative changes in the first year after gastrectomy. We aimed to develop a personalized prognostic artificial intelligence (AI) model to predict 5 year survival at 1 year after gastrectomy. Methods From a prospectively built gastric surgery registry from a tertiary hospital, 4025 gastric cancer patients (mean age 56.1 ± 10.9, 36.2% females) treated gastrectomy and survived more than a year were selected. Eighty‐nine variables including clinical and derived time‐varying variables were used as input variables. We proposed a multi‐tree extreme gradient boosting (XGBoost) algorithm, an ensemble AI algorithm based on 100 datasets derived from repeated five‐fold cross‐validation. Internal validation was performed in split datasets ( n = 1121) by comparing our proposed model and six other AI algorithms. External validation was performed in 590 patients from other hospitals (mean age 55.9 ± 11.2, 37.3% females). We performed a sensitivity analysis to analyse the effect of the nutritional and fat/muscle indices using a leave‐one‐out method. Results In the internal validation, our proposed model showed AUROC of 0.8237, which outperformed the other AI algorithms (0.7988–0.8165), 80.00% sensitivity, 72.34% specificity, and 76.17% balanced accuracy. In the external validation, our model showed AUROC of 0.8903, 86.96% sensitivity, 74.60% specificity, and 80.78% balanced accuracy. Sensitivity analysis demonstrated that the nutritional and fat/muscle indices influenced the balanced accuracy by 0.31% and 6.29% in the internal and external validation set, respectively. Our developed AI model was published on a website for personalized survival prediction. Conclusions Our proposed AI model provides substantially good performance in predicting 5 year survival at 1 year after gastric cancer surgery. The nutritional and fat/muscle indices contributed to increase the prediction performance of our AI model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
追寻的炎彬完成签到,获得积分20
刚刚
kevin发布了新的文献求助10
刚刚
青山完成签到,获得积分10
刚刚
整齐小猫咪完成签到,获得积分10
1秒前
zhouxinxiao完成签到,获得积分10
1秒前
研友_VZG7GZ应助稳重小蕾采纳,获得30
1秒前
科研通AI6应助ruru采纳,获得10
1秒前
zychaos发布了新的文献求助10
2秒前
万能图书馆应助小c采纳,获得10
2秒前
优美平凡完成签到,获得积分10
2秒前
冰菱完成签到,获得积分20
2秒前
举人烧烤发布了新的文献求助10
2秒前
2秒前
小黄小黄辉煌完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
free发布了新的文献求助10
3秒前
xin发布了新的文献求助10
3秒前
Loong完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
调皮项链应助欢快小土豆采纳,获得10
6秒前
Jans完成签到,获得积分10
7秒前
脑洞疼应助解美霞采纳,获得10
7秒前
7秒前
cao完成签到,获得积分10
7秒前
科研通AI6应助傻狗采纳,获得10
7秒前
zychaos完成签到,获得积分10
8秒前
Lyubb完成签到,获得积分10
8秒前
科研通AI6应助张张张张采纳,获得10
8秒前
杀出个黎明举报求助违规成功
8秒前
妩媚的海举报求助违规成功
8秒前
wy.he举报求助违规成功
8秒前
8秒前
慕青应助沙子采纳,获得10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624445
求助须知:如何正确求助?哪些是违规求助? 4710318
关于积分的说明 14950073
捐赠科研通 4778363
什么是DOI,文献DOI怎么找? 2553244
邀请新用户注册赠送积分活动 1515179
关于科研通互助平台的介绍 1475520