Prognostic artificial intelligence model to predict 5 year survival at 1 year after gastric cancer surgery based on nutrition and body morphometry

癌症 癌症手术 医学 外科 人工智能 内科学 计算机科学
作者
Ho Young Chung,Yousun Ko,Beom Su Kim,Hoon Hur,Jimi Huh,Sang‐Uk Han,Kyung Won Kim,Jin‐Seok Lee
出处
期刊:Journal of Cachexia, Sarcopenia and Muscle [Wiley]
卷期号:14 (2): 847-859 被引量:11
标识
DOI:10.1002/jcsm.13176
摘要

Abstract Background Personalized survival prediction is important in gastric cancer patients after gastrectomy based on large datasets with many variables including time‐varying factors in nutrition and body morphometry. One year after gastrectomy might be the optimal timing to predict long‐term survival because most patients experience significant nutritional change, muscle loss, and postoperative changes in the first year after gastrectomy. We aimed to develop a personalized prognostic artificial intelligence (AI) model to predict 5 year survival at 1 year after gastrectomy. Methods From a prospectively built gastric surgery registry from a tertiary hospital, 4025 gastric cancer patients (mean age 56.1 ± 10.9, 36.2% females) treated gastrectomy and survived more than a year were selected. Eighty‐nine variables including clinical and derived time‐varying variables were used as input variables. We proposed a multi‐tree extreme gradient boosting (XGBoost) algorithm, an ensemble AI algorithm based on 100 datasets derived from repeated five‐fold cross‐validation. Internal validation was performed in split datasets ( n = 1121) by comparing our proposed model and six other AI algorithms. External validation was performed in 590 patients from other hospitals (mean age 55.9 ± 11.2, 37.3% females). We performed a sensitivity analysis to analyse the effect of the nutritional and fat/muscle indices using a leave‐one‐out method. Results In the internal validation, our proposed model showed AUROC of 0.8237, which outperformed the other AI algorithms (0.7988–0.8165), 80.00% sensitivity, 72.34% specificity, and 76.17% balanced accuracy. In the external validation, our model showed AUROC of 0.8903, 86.96% sensitivity, 74.60% specificity, and 80.78% balanced accuracy. Sensitivity analysis demonstrated that the nutritional and fat/muscle indices influenced the balanced accuracy by 0.31% and 6.29% in the internal and external validation set, respectively. Our developed AI model was published on a website for personalized survival prediction. Conclusions Our proposed AI model provides substantially good performance in predicting 5 year survival at 1 year after gastric cancer surgery. The nutritional and fat/muscle indices contributed to increase the prediction performance of our AI model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
凌晨洋发布了新的文献求助10
1秒前
lalala发布了新的文献求助10
1秒前
无情的聋五关注了科研通微信公众号
1秒前
王旭智完成签到,获得积分10
2秒前
月yue发布了新的文献求助10
3秒前
深情安青应助shadow采纳,获得10
4秒前
5秒前
秋云完成签到 ,获得积分10
7秒前
Stove发布了新的文献求助10
8秒前
凌晨洋完成签到,获得积分10
8秒前
9秒前
科研通AI2S应助草木采纳,获得10
12秒前
14秒前
芒果大菠萝完成签到,获得积分10
17秒前
万能图书馆应助诗图采纳,获得10
17秒前
zyz完成签到,获得积分20
18秒前
20秒前
zzzhujp完成签到,获得积分10
20秒前
Lmj发布了新的文献求助10
21秒前
修仙应助齐安客采纳,获得10
21秒前
21秒前
22秒前
lvzhigang发布了新的文献求助10
23秒前
lm发布了新的文献求助30
24秒前
Jalynn2044发布了新的文献求助30
25秒前
zwenng发布了新的文献求助10
26秒前
猪蹄侠客完成签到,获得积分10
26秒前
李杰111111111完成签到,获得积分20
26秒前
李爱国应助Longbin李采纳,获得10
27秒前
27秒前
好哥哥发布了新的文献求助10
29秒前
111发布了新的文献求助10
32秒前
32秒前
Hello应助lm采纳,获得10
33秒前
小h发布了新的文献求助10
34秒前
34秒前
温暖涫完成签到 ,获得积分10
37秒前
37秒前
38秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141451
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803043
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302778
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237