已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Catalytic combustion of propane over Mg-modified Co1.5Mn1.5O4 spinel catalysts: Boosting C-H cleavage with Lewis acid and oxygen vacancies

催化作用 路易斯酸 化学 无机化学 尖晶石 吸附 丙烷 氧气 材料科学 物理化学 有机化学 冶金
作者
Chi Zhang,Yubei Lan,Yijia Cao,Shengwei Tang,Yunfa Chen,Wenxiang Tang
出处
期刊:Fuel [Elsevier]
卷期号:339: 127410-127410 被引量:25
标识
DOI:10.1016/j.fuel.2023.127410
摘要

Rational modulation of surface electronic structure can optimize the adsorption and activation of reactant molecules on the catalyst surface, which is crucial for catalytic elimination of hydrocarbons. Herein, a facile low-valence Mg doping strategy was applied to synthesize highly active and stable Co-Mn binary oxide (CMO) catalyst. Lewis acid sites and oxygen vacancies were purposefully introduced on CMO through the surface electron deficit caused by the substitution of doped Mg for host metals. For the CMO catalyst modified by appropriate amount of Mg (CMO-Mg0.05), the Co-Mn spinel with lattice expansion is significantly modified through substitution of Co or Mn ions with Mg2+, resulting in generation of abundant higher metal oxidation state species (Co3+, Mn4+) and oxygen vacancies. The best performance for catalytic propane combustion was achieved on CMO-Mg0.05 catalyst, with the T90 at 255 °C under high space velocity (60,000 ml g−1 h−1). Meanwhile, clear improvements on stability and water resistance were also achieved after the modification of Mg in CMO catalyst. Combined with C3H8-TPD, in-situ DRIFTS and various characterizations, it can be revealed that the synergistic effect of Lewis-acid sites and oxygen vacancies would remarkably promote the process of propane dissociative adsorption and mineralization. This work not only gives insight into the Mg dopants in boosting CH activation on CMO catalyst, but also provides a potential strategy for fabricating highly active hydrocarbon combustion catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
科研通AI5应助Zyra采纳,获得10
刚刚
真的不会完成签到,获得积分10
1秒前
2秒前
haru9622完成签到 ,获得积分10
2秒前
迪丽热巴发布了新的文献求助30
4秒前
hu完成签到,获得积分10
4秒前
知安发布了新的文献求助10
5秒前
5秒前
李健的粉丝团团长应助keyz采纳,获得10
5秒前
mhpvv完成签到,获得积分20
6秒前
粗心的严青完成签到,获得积分10
6秒前
chen完成签到,获得积分10
6秒前
情怀应助穿堂风采纳,获得10
7秒前
江城一霸完成签到,获得积分10
8秒前
9秒前
orixero应助豪hao采纳,获得10
9秒前
鑫鑫完成签到,获得积分20
9秒前
明亮夕阳发布了新的文献求助10
9秒前
Jero21完成签到,获得积分20
10秒前
10秒前
11秒前
sbc完成签到,获得积分10
14秒前
15秒前
扬大小汤发布了新的文献求助10
16秒前
鑫鑫发布了新的文献求助10
16秒前
16秒前
20秒前
丘比特应助扬大小汤采纳,获得10
22秒前
23秒前
田様应助Singularity采纳,获得10
23秒前
JXXX完成签到,获得积分20
23秒前
23秒前
25秒前
SAF发布了新的文献求助10
28秒前
跳跃蓝完成签到 ,获得积分10
28秒前
28秒前
General发布了新的文献求助10
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491136
求助须知:如何正确求助?哪些是违规求助? 3077792
关于积分的说明 9150450
捐赠科研通 2770267
什么是DOI,文献DOI怎么找? 1520222
邀请新用户注册赠送积分活动 704531
科研通“疑难数据库(出版商)”最低求助积分说明 702202