A time series model adapted to multiple environments for recirculating aquaculture systems

适应性 计算机科学 预警系统 数据挖掘 时间序列 传感器融合 人工神经网络 图形 人工智能 机器学习 生态学 生物 电信 理论计算机科学
作者
Gedi Liu,Yinan Jiang,Keyang Zhong,Yan Yang,Yang Wang
出处
期刊:Aquaculture [Elsevier]
卷期号:567: 739284-739284 被引量:18
标识
DOI:10.1016/j.aquaculture.2023.739284
摘要

Environmental time series modeling of recirculating aquaculture systems provides the basis for the design of intelligent and foreseeable agricultural facilities. The modeling accuracy of environmental factors plays an important role, which could help grasp the environmental situation and change trend of the recirculating aquaculture system, assist in early warning when the environment factor level exceeds the normal data range, and combine with the control method to improve the accuracy of environmental control. The traditional time series model is difficult to predict complex situations, which is mainly due to the effective integration of multi-dimensional data. Our goal is to make improvements to the traditional time series model. The proposed multiple graph fusion network (GraphTS) fuses multi-sensor Spatio-temporal information using a multi-graph fusion method based on Gated Recurrent Unit (GRU) and graph attention neural network. We collected two recirculating aquaculture datasets with various features and applications to test GraphTS’s performance. Comparing the average metrics of predictor outcomes of proposed GraphTS with the standard model LSTM, the average margin of error (AME) is reduced by 37% and 13%, and the Pearson correlation Coefficient (PCC) is improved to 97% and 96% for two datasets, respectively. The best results are also achieved on the discrete traffic prediction dataset. It shows the adaptability and multi-dimensional information gathering ability of GraphTS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
果果瑞宁完成签到,获得积分10
刚刚
1秒前
机智小虾米完成签到,获得积分20
1秒前
goldenfleece完成签到,获得积分10
2秒前
科研通AI2S应助学者采纳,获得10
2秒前
小杨完成签到,获得积分10
3秒前
sutharsons应助科研通管家采纳,获得30
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得30
4秒前
SciGPT应助科研通管家采纳,获得10
4秒前
Eric_Lee2000应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
王子完成签到,获得积分10
5秒前
李繁蕊发布了新的文献求助10
6秒前
诚心的大碗应助明理念桃采纳,获得20
6秒前
7秒前
meng完成签到,获得积分10
7秒前
学者完成签到,获得积分10
7秒前
英俊的铭应助愉快盼曼采纳,获得10
8秒前
8秒前
小媛完成签到 ,获得积分10
9秒前
学术小白完成签到,获得积分20
9秒前
赘婿应助xiaomeng采纳,获得10
9秒前
Khr1stINK发布了新的文献求助10
9秒前
清新的苑博完成签到,获得积分10
9秒前
10秒前
果果瑞宁发布了新的文献求助10
11秒前
阿美发布了新的文献求助30
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808