A time series model adapted to multiple environments for recirculating aquaculture systems

适应性 计算机科学 预警系统 数据挖掘 时间序列 传感器融合 人工神经网络 图形 人工智能 机器学习 生态学 生物 电信 理论计算机科学
作者
Gedi Liu,Yinan Jiang,Keyang Zhong,Yan Yang,Yang Wang
出处
期刊:Aquaculture [Elsevier]
卷期号:567: 739284-739284 被引量:18
标识
DOI:10.1016/j.aquaculture.2023.739284
摘要

Environmental time series modeling of recirculating aquaculture systems provides the basis for the design of intelligent and foreseeable agricultural facilities. The modeling accuracy of environmental factors plays an important role, which could help grasp the environmental situation and change trend of the recirculating aquaculture system, assist in early warning when the environment factor level exceeds the normal data range, and combine with the control method to improve the accuracy of environmental control. The traditional time series model is difficult to predict complex situations, which is mainly due to the effective integration of multi-dimensional data. Our goal is to make improvements to the traditional time series model. The proposed multiple graph fusion network (GraphTS) fuses multi-sensor Spatio-temporal information using a multi-graph fusion method based on Gated Recurrent Unit (GRU) and graph attention neural network. We collected two recirculating aquaculture datasets with various features and applications to test GraphTS’s performance. Comparing the average metrics of predictor outcomes of proposed GraphTS with the standard model LSTM, the average margin of error (AME) is reduced by 37% and 13%, and the Pearson correlation Coefficient (PCC) is improved to 97% and 96% for two datasets, respectively. The best results are also achieved on the discrete traffic prediction dataset. It shows the adaptability and multi-dimensional information gathering ability of GraphTS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苌枫完成签到,获得积分20
刚刚
金格完成签到,获得积分10
刚刚
林夕发布了新的文献求助10
刚刚
梧桐完成签到,获得积分10
1秒前
科研通AI6应助小飞侠采纳,获得10
1秒前
粒er完成签到,获得积分10
1秒前
月星发布了新的文献求助30
1秒前
承乐完成签到,获得积分20
2秒前
2秒前
3秒前
上官若男应助Katherine采纳,获得10
3秒前
3秒前
4秒前
mjje发布了新的文献求助10
4秒前
Dr.Liu完成签到,获得积分10
4秒前
So完成签到,获得积分10
4秒前
科研通AI2S应助啊实打实的采纳,获得10
4秒前
5秒前
lily发布了新的文献求助10
5秒前
5秒前
ldy完成签到,获得积分10
5秒前
老实用户完成签到 ,获得积分10
5秒前
5秒前
5秒前
核桃发布了新的文献求助10
5秒前
6秒前
Rainbow完成签到,获得积分10
6秒前
卷卷应助沉静丹寒采纳,获得10
6秒前
6秒前
杨羕完成签到,获得积分10
6秒前
6秒前
7秒前
是小孙啊发布了新的文献求助10
7秒前
7秒前
卷卷应助lvxin采纳,获得20
7秒前
oneanone完成签到 ,获得积分10
7秒前
马丁发布了新的文献求助10
8秒前
8秒前
8秒前
范范完成签到,获得积分10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586181
求助须知:如何正确求助?哪些是违规求助? 4669508
关于积分的说明 14778493
捐赠科研通 4618944
什么是DOI,文献DOI怎么找? 2530786
邀请新用户注册赠送积分活动 1499538
关于科研通互助平台的介绍 1467782