A time series model adapted to multiple environments for recirculating aquaculture systems

适应性 计算机科学 预警系统 数据挖掘 时间序列 传感器融合 人工神经网络 图形 人工智能 机器学习 生态学 生物 电信 理论计算机科学
作者
Gedi Liu,Yinan Jiang,Keyang Zhong,Yan Yang,Yang Wang
出处
期刊:Aquaculture [Elsevier BV]
卷期号:567: 739284-739284 被引量:18
标识
DOI:10.1016/j.aquaculture.2023.739284
摘要

Environmental time series modeling of recirculating aquaculture systems provides the basis for the design of intelligent and foreseeable agricultural facilities. The modeling accuracy of environmental factors plays an important role, which could help grasp the environmental situation and change trend of the recirculating aquaculture system, assist in early warning when the environment factor level exceeds the normal data range, and combine with the control method to improve the accuracy of environmental control. The traditional time series model is difficult to predict complex situations, which is mainly due to the effective integration of multi-dimensional data. Our goal is to make improvements to the traditional time series model. The proposed multiple graph fusion network (GraphTS) fuses multi-sensor Spatio-temporal information using a multi-graph fusion method based on Gated Recurrent Unit (GRU) and graph attention neural network. We collected two recirculating aquaculture datasets with various features and applications to test GraphTS’s performance. Comparing the average metrics of predictor outcomes of proposed GraphTS with the standard model LSTM, the average margin of error (AME) is reduced by 37% and 13%, and the Pearson correlation Coefficient (PCC) is improved to 97% and 96% for two datasets, respectively. The best results are also achieved on the discrete traffic prediction dataset. It shows the adaptability and multi-dimensional information gathering ability of GraphTS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助调皮铸海采纳,获得10
刚刚
1秒前
特梅头完成签到,获得积分20
1秒前
1秒前
victorchen完成签到,获得积分10
2秒前
开心超人发布了新的文献求助10
2秒前
搜集达人应助666采纳,获得10
3秒前
3秒前
周雅彬完成签到,获得积分20
3秒前
脑洞疼应助Yy采纳,获得10
3秒前
研友_VZG7GZ应助典雅的俊驰采纳,获得10
4秒前
熊熊完成签到,获得积分10
4秒前
4秒前
迅速的皮皮虾完成签到,获得积分10
4秒前
Ruoyu完成签到,获得积分10
5秒前
DQ完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
星星完成签到,获得积分10
9秒前
Dskelf完成签到,获得积分10
9秒前
无花果应助故意的访云采纳,获得10
9秒前
9秒前
10秒前
Akim应助jase采纳,获得10
10秒前
10秒前
Jouleken完成签到,获得积分10
10秒前
博修发布了新的文献求助10
11秒前
LI完成签到,获得积分10
11秒前
12秒前
tree发布了新的文献求助10
12秒前
12秒前
乐乐应助rengar采纳,获得10
12秒前
orixero应助年年采纳,获得10
12秒前
青词完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650