A time series model adapted to multiple environments for recirculating aquaculture systems

适应性 计算机科学 预警系统 数据挖掘 时间序列 传感器融合 人工神经网络 图形 人工智能 机器学习 生态学 生物 电信 理论计算机科学
作者
Gedi Liu,Yinan Jiang,Keyang Zhong,Yan Yang,Yang Wang
出处
期刊:Aquaculture [Elsevier]
卷期号:567: 739284-739284 被引量:18
标识
DOI:10.1016/j.aquaculture.2023.739284
摘要

Environmental time series modeling of recirculating aquaculture systems provides the basis for the design of intelligent and foreseeable agricultural facilities. The modeling accuracy of environmental factors plays an important role, which could help grasp the environmental situation and change trend of the recirculating aquaculture system, assist in early warning when the environment factor level exceeds the normal data range, and combine with the control method to improve the accuracy of environmental control. The traditional time series model is difficult to predict complex situations, which is mainly due to the effective integration of multi-dimensional data. Our goal is to make improvements to the traditional time series model. The proposed multiple graph fusion network (GraphTS) fuses multi-sensor Spatio-temporal information using a multi-graph fusion method based on Gated Recurrent Unit (GRU) and graph attention neural network. We collected two recirculating aquaculture datasets with various features and applications to test GraphTS’s performance. Comparing the average metrics of predictor outcomes of proposed GraphTS with the standard model LSTM, the average margin of error (AME) is reduced by 37% and 13%, and the Pearson correlation Coefficient (PCC) is improved to 97% and 96% for two datasets, respectively. The best results are also achieved on the discrete traffic prediction dataset. It shows the adaptability and multi-dimensional information gathering ability of GraphTS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JM完成签到,获得积分10
刚刚
慕青应助满意紫丝采纳,获得10
刚刚
安静的毛豆完成签到,获得积分20
1秒前
情怀应助文右三采纳,获得10
1秒前
优秀思卉发布了新的文献求助30
2秒前
3秒前
冯前浪完成签到,获得积分20
4秒前
木木木发布了新的文献求助10
5秒前
5秒前
7秒前
7秒前
QDU应助第五个完全数采纳,获得20
7秒前
tiptip应助李里哩采纳,获得10
8秒前
SciGPT应助李里哩采纳,获得10
8秒前
8秒前
周繁发布了新的文献求助10
8秒前
优秀思卉完成签到,获得积分10
8秒前
大气的苠完成签到,获得积分10
9秒前
Hello应助科研鲁宾孙采纳,获得10
9秒前
赘婿应助冯前浪采纳,获得30
10秒前
ZJFL发布了新的文献求助10
10秒前
10秒前
酒剑仙完成签到,获得积分10
11秒前
一一发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
14秒前
Auditor发布了新的文献求助10
15秒前
CodeCraft应助帅气航空采纳,获得10
16秒前
16秒前
Awei完成签到,获得积分10
17秒前
小桶爸爸发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
今后应助早睡早起的安采纳,获得30
19秒前
zhou发布了新的文献求助10
20秒前
21秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978