Hyperspectral Image Classification With Contrastive Graph Convolutional Network

高光谱成像 计算机科学 图形 人工智能 模式识别(心理学) 卷积神经网络 上下文图像分类 图像(数学) 理论计算机科学
作者
Wentao Yu,Sheng Wan,Guangyu Li,Jian Yang,Chen Gong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:19
标识
DOI:10.1109/tgrs.2023.3240721
摘要

Recently, Graph Convolutional Network (GCN) has been widely used in Hyperspectral Image (HSI) classification due to its satisfactory performance. However, the number of labeled pixels is very limited in HSI, and thus the available supervision information is usually insufficient, which will inevitably degrade the representation ability of most existing GCN-based methods. To enhance the feature representation ability, in this paper, a GCN model with contrastive learning is proposed to explore the supervision signals contained in both spectral information and spatial relations, which is termed Contrastive Graph Convolutional Network (ConGCN), for HSI classification. First, in order to mine sufficient supervision signals from spectral information, a semi-supervised contrastive loss function is utilized to maximize the agreement between different views of the same node or the nodes from the same land cover category. Second, to extract the precious yet implicit spatial relations in HSI, a graph generative loss function is leveraged to explore supplementary supervision signals contained in the graph topology. In addition, an adaptive graph augmentation technique is designed to flexibly incorporate the spectral-spatial priors of HSI, which helps facilitate the subsequent contrastive representation learning. The extensive experimental results on four typical benchmark datasets firmly demonstrate the effectiveness of the proposed ConGCN in both qualitative and quantitative aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Neonoes完成签到,获得积分10
1秒前
惠_____完成签到 ,获得积分10
1秒前
英勇凝旋完成签到,获得积分10
1秒前
王小凡完成签到 ,获得积分10
2秒前
专注人生完成签到,获得积分10
2秒前
要减肥香水完成签到,获得积分10
2秒前
面包片完成签到,获得积分10
3秒前
充电宝应助山顶洞人采纳,获得10
3秒前
lbx完成签到,获得积分10
3秒前
夜未央完成签到,获得积分10
3秒前
Luo完成签到,获得积分10
4秒前
麦穗完成签到,获得积分10
4秒前
叶诗柳给叶诗柳的求助进行了留言
4秒前
ypx完成签到,获得积分10
4秒前
感到蔚蓝发布了新的文献求助30
4秒前
茴香完成签到,获得积分10
5秒前
虚心岂愈完成签到,获得积分10
5秒前
5秒前
木木杨完成签到,获得积分10
5秒前
自然的衫完成签到 ,获得积分10
6秒前
6秒前
ZHANG完成签到,获得积分10
7秒前
fffff完成签到,获得积分10
7秒前
现实的听芹完成签到,获得积分10
8秒前
fan051500完成签到,获得积分10
8秒前
Lucas应助虚心岂愈采纳,获得10
8秒前
9秒前
asd0817完成签到,获得积分10
11秒前
mary完成签到 ,获得积分10
11秒前
11秒前
12秒前
jou完成签到,获得积分10
13秒前
咕_完成签到 ,获得积分10
13秒前
Amanda完成签到,获得积分10
13秒前
LIVE完成签到,获得积分10
14秒前
hakunamatata完成签到 ,获得积分10
14秒前
筷子夹豆腐脑完成签到,获得积分10
14秒前
缓慢的冬云完成签到,获得积分10
15秒前
Jackson_Cai完成签到,获得积分10
17秒前
tian发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960229
求助须知:如何正确求助?哪些是违规求助? 3506394
关于积分的说明 11129617
捐赠科研通 3238551
什么是DOI,文献DOI怎么找? 1789817
邀请新用户注册赠送积分活动 871918
科研通“疑难数据库(出版商)”最低求助积分说明 803099