Hyperspectral Image Classification With Contrastive Graph Convolutional Network

高光谱成像 计算机科学 图形 人工智能 模式识别(心理学) 卷积神经网络 上下文图像分类 图像(数学) 理论计算机科学
作者
Wentao Yu,Sheng Wan,Guangyu Li,Jian Yang,Chen Gong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:19
标识
DOI:10.1109/tgrs.2023.3240721
摘要

Recently, Graph Convolutional Network (GCN) has been widely used in Hyperspectral Image (HSI) classification due to its satisfactory performance. However, the number of labeled pixels is very limited in HSI, and thus the available supervision information is usually insufficient, which will inevitably degrade the representation ability of most existing GCN-based methods. To enhance the feature representation ability, in this paper, a GCN model with contrastive learning is proposed to explore the supervision signals contained in both spectral information and spatial relations, which is termed Contrastive Graph Convolutional Network (ConGCN), for HSI classification. First, in order to mine sufficient supervision signals from spectral information, a semi-supervised contrastive loss function is utilized to maximize the agreement between different views of the same node or the nodes from the same land cover category. Second, to extract the precious yet implicit spatial relations in HSI, a graph generative loss function is leveraged to explore supplementary supervision signals contained in the graph topology. In addition, an adaptive graph augmentation technique is designed to flexibly incorporate the spectral-spatial priors of HSI, which helps facilitate the subsequent contrastive representation learning. The extensive experimental results on four typical benchmark datasets firmly demonstrate the effectiveness of the proposed ConGCN in both qualitative and quantitative aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晓森完成签到,获得积分10
刚刚
xz333126发布了新的文献求助10
4秒前
4秒前
兜风寻宝藏完成签到,获得积分10
4秒前
nenoaowu发布了新的文献求助10
5秒前
kkk完成签到,获得积分10
5秒前
学习完成签到 ,获得积分10
8秒前
嗖嗖完成签到,获得积分10
9秒前
9秒前
李东东发布了新的文献求助10
10秒前
Lucky完成签到,获得积分20
12秒前
研友_xnEOX8完成签到,获得积分10
13秒前
14秒前
YYGQ完成签到,获得积分10
15秒前
xiaojian_291完成签到,获得积分10
16秒前
研友_xnEOX8发布了新的文献求助10
16秒前
17秒前
LOOW发布了新的文献求助10
19秒前
bensonyang1013完成签到 ,获得积分10
20秒前
20秒前
21秒前
Yuxuan发布了新的文献求助30
21秒前
想龙空发布了新的文献求助20
21秒前
JIANGCHUNYAN完成签到,获得积分10
22秒前
Owen应助花花采纳,获得10
23秒前
跳跃的太阳完成签到,获得积分10
24秒前
JIANGCHUNYAN发布了新的文献求助10
25秒前
LOOW完成签到,获得积分10
27秒前
28秒前
聪慧若风完成签到,获得积分10
31秒前
33秒前
Nancy发布了新的文献求助10
34秒前
乐乐应助想龙空采纳,获得10
35秒前
科研通AI2S应助JIANGCHUNYAN采纳,获得10
37秒前
liuying发布了新的文献求助10
37秒前
邓佳鑫Alan应助淡定的吐司采纳,获得10
37秒前
38秒前
苹果语柔发布了新的文献求助30
38秒前
烟花应助科研通管家采纳,获得10
39秒前
田様应助科研通管家采纳,获得10
39秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212093
求助须知:如何正确求助?哪些是违规求助? 2860891
关于积分的说明 8126608
捐赠科研通 2526818
什么是DOI,文献DOI怎么找? 1360630
科研通“疑难数据库(出版商)”最低求助积分说明 643249
邀请新用户注册赠送积分活动 615504