Hyperspectral Image Classification With Contrastive Graph Convolutional Network

高光谱成像 计算机科学 图形 人工智能 模式识别(心理学) 卷积神经网络 上下文图像分类 图像(数学) 理论计算机科学
作者
Wentao Yu,Sheng Wan,Guangyu Li,Jian Yang,Chen Gong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:19
标识
DOI:10.1109/tgrs.2023.3240721
摘要

Recently, Graph Convolutional Network (GCN) has been widely used in Hyperspectral Image (HSI) classification due to its satisfactory performance. However, the number of labeled pixels is very limited in HSI, and thus the available supervision information is usually insufficient, which will inevitably degrade the representation ability of most existing GCN-based methods. To enhance the feature representation ability, in this paper, a GCN model with contrastive learning is proposed to explore the supervision signals contained in both spectral information and spatial relations, which is termed Contrastive Graph Convolutional Network (ConGCN), for HSI classification. First, in order to mine sufficient supervision signals from spectral information, a semi-supervised contrastive loss function is utilized to maximize the agreement between different views of the same node or the nodes from the same land cover category. Second, to extract the precious yet implicit spatial relations in HSI, a graph generative loss function is leveraged to explore supplementary supervision signals contained in the graph topology. In addition, an adaptive graph augmentation technique is designed to flexibly incorporate the spectral-spatial priors of HSI, which helps facilitate the subsequent contrastive representation learning. The extensive experimental results on four typical benchmark datasets firmly demonstrate the effectiveness of the proposed ConGCN in both qualitative and quantitative aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
槐序完成签到,获得积分20
刚刚
云隐完成签到,获得积分10
刚刚
hunting完成签到,获得积分10
3秒前
3秒前
共享精神应助潇潇雨歇采纳,获得10
4秒前
寂寞的寄文完成签到,获得积分10
4秒前
爱静静应助大力的无声采纳,获得10
5秒前
和平使命应助大力的无声采纳,获得10
5秒前
6秒前
jessie发布了新的文献求助10
6秒前
小马甲应助寂寞的寄文采纳,获得10
9秒前
10秒前
岸在海的深处完成签到 ,获得积分10
11秒前
xiao应助小吴采纳,获得10
12秒前
西溪完成签到 ,获得积分10
12秒前
13秒前
pi发布了新的文献求助10
14秒前
hunting发布了新的文献求助10
14秒前
14秒前
jujijuji应助Anquan采纳,获得10
14秒前
15秒前
15秒前
bkagyin应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
王黎应助科研通管家采纳,获得30
17秒前
李爱国应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
Neko应助科研通管家采纳,获得20
18秒前
18秒前
JiangHb完成签到,获得积分10
19秒前
20秒前
20秒前
Jian发布了新的文献求助20
20秒前
lingjuanwu发布了新的文献求助10
20秒前
南鸢完成签到 ,获得积分10
21秒前
今后应助wbn1212采纳,获得10
21秒前
光电彭于晏完成签到,获得积分10
21秒前
丰盛的煎饼应助LiShin采纳,获得10
22秒前
大胆的凡儿完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851