Hyperspectral Image Classification With Contrastive Graph Convolutional Network

高光谱成像 计算机科学 图形 人工智能 模式识别(心理学) 卷积神经网络 上下文图像分类 图像(数学) 理论计算机科学
作者
Wentao Yu,Sheng Wan,Guangyu Li,Jian Yang,Chen Gong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:19
标识
DOI:10.1109/tgrs.2023.3240721
摘要

Recently, Graph Convolutional Network (GCN) has been widely used in Hyperspectral Image (HSI) classification due to its satisfactory performance. However, the number of labeled pixels is very limited in HSI, and thus the available supervision information is usually insufficient, which will inevitably degrade the representation ability of most existing GCN-based methods. To enhance the feature representation ability, in this paper, a GCN model with contrastive learning is proposed to explore the supervision signals contained in both spectral information and spatial relations, which is termed Contrastive Graph Convolutional Network (ConGCN), for HSI classification. First, in order to mine sufficient supervision signals from spectral information, a semi-supervised contrastive loss function is utilized to maximize the agreement between different views of the same node or the nodes from the same land cover category. Second, to extract the precious yet implicit spatial relations in HSI, a graph generative loss function is leveraged to explore supplementary supervision signals contained in the graph topology. In addition, an adaptive graph augmentation technique is designed to flexibly incorporate the spectral-spatial priors of HSI, which helps facilitate the subsequent contrastive representation learning. The extensive experimental results on four typical benchmark datasets firmly demonstrate the effectiveness of the proposed ConGCN in both qualitative and quantitative aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
桐桐应助轻松大象采纳,获得10
3秒前
默鱼发布了新的文献求助10
3秒前
隐形曼青应助卷儿w采纳,获得30
4秒前
烂漫宝贝完成签到,获得积分10
4秒前
搜集达人应助林登万采纳,获得10
4秒前
5秒前
英姑应助ORAzzz采纳,获得10
5秒前
阳光完成签到,获得积分10
5秒前
pzh完成签到,获得积分10
5秒前
今日最佳上好佳完成签到,获得积分10
5秒前
5秒前
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
在水一方应助科研通管家采纳,获得20
6秒前
今后应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
Orange应助wh采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得30
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468557
求助须知:如何正确求助?哪些是违规求助? 4571954
关于积分的说明 14332897
捐赠科研通 4498650
什么是DOI,文献DOI怎么找? 2464664
邀请新用户注册赠送积分活动 1453302
关于科研通互助平台的介绍 1427914