清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Automated Optical Inspection (Aoi) System for Three-Dimensional (3d) Defects Detection on Glass Micro Optical Components (Gmoc)

材料科学 光学 计算机科学 物理
作者
Yinchao Du,jiangpeng chen,han zhou,xiaoling yang,zhongqi wang,Jie Zhang,Yuechun Shi,Xiangfei Chen,xuezhe zheng
标识
DOI:10.2139/ssrn.4345313
摘要

As wavelength division multiplexing (WDM) being widely deployed, large number of glass micro optical components (GMOC) are utilized in optical transceivers. Visual inspection for these GMOCs is a necessary and critical manufacturing step for quality and reliability control. However, due to the facts that the glass components are usually transparent and defects are typically small and located randomly in 3D, manual inspection is often labor intensive and time consuming while the automated optical inspection (AOI) hasn’t been able to provide desirable accuracy and efficiency. In this paper, an AOI system incorporating 3D video acquisition and a novel machine-learning algorithm based on a two-stage neural network was developed successfully for 3D defects detection on GMOCs. It consists of a robotic arm for moving the parts in 3D, a camera with an illumination module for video acquisition of a part moving in 3D, and a video streaming processing unit empowered by a machine vision algorithm to detect the defects on GMOCs in real time on a production line. The robotic arm enables the fixed camera capture multi-perspective video of a test sample without having to refocus. The two-stage machine learning network is based on a modified YOLOv4 architecture with addition of color channel separation (CCS) convolution, an image quality evaluation (IQE) module, and frame fusion module to integrate the single frame detection results. It is capable of processing the multi-perspective video stream in a coarse-to-fine manner in real time for defects detection. Trained with 30 samples, the AOI system achieved very promising performances with a recall rate of 1, a detection accuracy of 97%, and an inspection time of 48s per part.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
8秒前
poppysss完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
飞云完成签到 ,获得积分10
26秒前
27秒前
量子星尘发布了新的文献求助10
32秒前
37秒前
量子星尘发布了新的文献求助10
39秒前
48秒前
dreamwalk完成签到 ,获得积分10
49秒前
沉静香氛完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
54秒前
Johnson完成签到 ,获得积分10
55秒前
58秒前
新奇完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
三人水明完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
青桔柠檬完成签到 ,获得积分10
1分钟前
bc应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
兜兜揣满糖完成签到 ,获得积分10
1分钟前
lingling完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
YMY完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
可靠的书桃完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222235
关于积分的说明 9744098
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757780
科研通“疑难数据库(出版商)”最低求助积分说明 734549