Applications of deep learning in precision weed management: A review

计算机科学 人工智能 深度学习 多光谱图像 背景(考古学) 学习迁移 杂草 机器学习 领域(数学) 分割 地理 数学 农学 生物 考古 纯数学
作者
Nitin Rai,Yu Zhang,Billy G. Ram,Leon Schumacher,Ravi K. Yellavajjala,Sreekala G. Bajwa,Xin Sun
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:206: 107698-107698 被引量:38
标识
DOI:10.1016/j.compag.2023.107698
摘要

Deep Learning (DL) has been described as one of the key subfields of Artificial Intelligence (AI) that is transforming weed detection for site-specific weed management (SSWM). In the last demi-decade, DL techniques have been integrated with ground as well as aerial-based technologies to identify weeds in still image context and real-time setting. After observing the current research trend in DL-based weed detection, techniques are advancing by assisting precision weeding technologies to make smart decisions. Therefore, the objective of this paper was to present a systematic review study that involves DL-based weed detection techniques and technologies available for SSWM. To accomplish this study, a comprehensive literature survey was performed that consists of 60 closest technical papers on DL-based weed detection. The key findings are summarized as follows, a) transfer learning approach is a widely adopted technique to address weed detection in majority of research work, b) less focus navigated towards custom designed neural networks for weed detection task, c) based on the pretrained models deployed on test dataset, no one specific model can be attributed to have achieved high accuracy on multiple field images pertaining to several research studies, d) inferencing DL models on resource-constrained edge devices with limited number of dataset is lagging, e) different versions of YOLO (mostly v3) is a widely adopted model for detecting weeds in real-time scenario, f) SegNet and U-Net models have been deployed to accomplish semantic segmentation task in multispectral aerial imagery, g) less number of open-source weed image dataset acquired using drones, h) lack of research in exploring optimization and generalization techniques for weed identification in aerial images, i) research in exploring ways to design models that consume less training hours, low-power consumption and less parameters during training or inferencing, and j) slow-moving advances in optimizing models based on domain adaptation approach. In conclusion, this review will help researchers, DL experts, weed scientists, farmers, and technology extension specialist to gain updates in the area of DL techniques and technologies available for SSWM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
隐形曼青应助987654采纳,获得10
刚刚
情怀应助阳光的豁采纳,获得10
3秒前
JamesPei应助Carmen采纳,获得30
3秒前
lightman发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
9秒前
hardworkcd应助豆豆采纳,获得10
9秒前
SciGPT应助四憙采纳,获得10
11秒前
Jrssion发布了新的文献求助10
12秒前
Wang发布了新的文献求助10
13秒前
小二郎应助闪闪冰淇淋采纳,获得10
14秒前
orange-study应助风趣尔柳采纳,获得10
15秒前
NexusExplorer应助leimingming采纳,获得10
15秒前
小马甲应助友好的新儿采纳,获得10
15秒前
丰知然应助lightman采纳,获得10
16秒前
19秒前
19秒前
闪闪冰淇淋完成签到,获得积分20
22秒前
23秒前
无情洋葱应助生动的书翠采纳,获得30
23秒前
24秒前
26秒前
喜妞关注了科研通微信公众号
26秒前
淡定小天鹅完成签到,获得积分20
26秒前
26秒前
27秒前
27秒前
cocolu给Otorhino的求助进行了留言
28秒前
科目三应助典雅的俊驰采纳,获得10
29秒前
orange-study发布了新的文献求助10
29秒前
31秒前
两百次梦游完成签到,获得积分10
31秒前
31秒前
32秒前
科目三应助健忘的帽子采纳,获得10
33秒前
bkagyin应助louis采纳,获得10
34秒前
G哟X发布了新的文献求助20
34秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416752
求助须知:如何正确求助?哪些是违规求助? 3018587
关于积分的说明 8884468
捐赠科研通 2705811
什么是DOI,文献DOI怎么找? 1483954
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681049