Variational Mode Decomposition for NMR Echo Data Denoising

降噪 Echo(通信协议) 松弛法 计算机科学 信号(编程语言) 希尔伯特-黄变换 噪音(视频) 核磁共振 数据处理 自旋回波 信号处理 算法 信噪比(成像) 人工智能 物理 磁共振成像 白噪声 数字信号处理 医学 计算机网络 电信 计算机硬件 图像(数学) 放射科 程序设计语言 操作系统
作者
Jiangfeng Guo,Ranhong Xie,Yuexiang Wang,Lizhi Xiao,Jianwei Fu,Guowen Jin,Sihui Luo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:4
标识
DOI:10.1109/tgrs.2023.3237925
摘要

Nuclear magnetic resonance (NMR) relaxometry, a noninvasive and nondestructive method, is a key technique for unconventional reservoir evaluation. Echo data detected from NMR instrument, a kind of weak signal, however, is characterized by a low signal-to-noise ratio (SNR). The achievement of NMR relaxation spectra inversion of a high precision, for echo data with a low SNR, is a challenge, which will also affect the unconventional reservoir evaluation of NMR logging. In this article, a variational mode decomposition (VMD) method was proposed for NMR echo data denoising. NMR echo data were decomposed into an ensemble of intrinsic mode functions (IMFs) by the VMD method. The IMF number is an important parameter for VMD, and VMD results are different with various IMF numbers. An optimal selection method for the IMF number was proposed. The decomposed IMFs compose of signals with different frequencies. Noise is from high-frequency signal, but valuable data are from low-frequency signal. The effective IMFs in VMD were selected and summed as the denoised echo data. Numerical simulations and field NMR logging data processing were undertaken to evaluate the NMR echo data denoising effectiveness and practicality of the proposed VMD-based method. The results showed that the inverted NMR spectra exhibit a higher quality after the VMD-based denoise, compared with those for raw echo data and after the empirical mode decomposition (EMD) denoise. This indicates that a higher denoising quality is achieved by the VMD-based method than by the EMD-based method for NMR echo data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘坦苇发布了新的文献求助10
刚刚
好好睡觉完成签到,获得积分10
1秒前
1秒前
Lin应助cocolu采纳,获得50
2秒前
深情安青应助苏苏爱学习采纳,获得10
2秒前
CE完成签到,获得积分10
2秒前
3秒前
3秒前
弄啥嘞昂应助飞云采纳,获得10
4秒前
5秒前
123发布了新的文献求助10
6秒前
飘逸数据线完成签到 ,获得积分10
6秒前
6秒前
shentaii发布了新的文献求助10
6秒前
CE发布了新的文献求助10
7秒前
小二郎应助维斯佩尔采纳,获得10
8秒前
9秒前
10秒前
苏州河发布了新的文献求助10
11秒前
wjh发布了新的文献求助10
13秒前
无花果应助花开那年采纳,获得10
13秒前
jbtjht发布了新的文献求助20
14秒前
14秒前
NexusExplorer应助123采纳,获得10
14秒前
14秒前
王彬完成签到,获得积分10
15秒前
39完成签到,获得积分10
16秒前
情怀应助草木方子采纳,获得10
19秒前
852应助苏州河采纳,获得10
19秒前
jingchengke发布了新的文献求助10
19秒前
陈小飞完成签到,获得积分10
20秒前
5001完成签到,获得积分20
21秒前
21秒前
24秒前
天天快乐应助besatified采纳,获得10
24秒前
劲秉应助Ghost采纳,获得30
25秒前
小甘完成签到,获得积分10
26秒前
88发布了新的文献求助10
27秒前
123发布了新的文献求助10
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459450
求助须知:如何正确求助?哪些是违规求助? 3053885
关于积分的说明 9039213
捐赠科研通 2743260
什么是DOI,文献DOI怎么找? 1504731
科研通“疑难数据库(出版商)”最低求助积分说明 695392
邀请新用户注册赠送积分活动 694677