Role of superoxide radical and singlet oxygen in peroxymonosulfate activation by iron-doped bone char for efficient acetaminophen degradation

单线态氧 生物炭 烧焦 化学 催化作用 电子顺磁共振 氧气 光化学 激进的 煅烧 活性氧 羟基自由基 无机化学 核化学 有机化学 热解 生物化学 物理 核磁共振
作者
Yifeng Zeng,Fan Wang,Dongqin He,Jianqiang Sun,Jun Li,Hongwei Luo,Xiangliang Pan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:459: 141642-141642 被引量:107
标识
DOI:10.1016/j.cej.2023.141642
摘要

Bone char is a hydroxyapatite-rich product obtained by calcining animal bones. However, the role of inorganic hydroxyapatite is often overlooked in bone char-catalyzed persulfate systems. In this work, iron was doped into swine bone-derived biochar (Fe-BC) by simple impregnation, and the Fe-BC catalysts were used for the first time to activate peroxymonosulfate (PMS). The obtained Fe-BC/PMS system could rapidly degrade the target pollutants (0.0529 s−1, 90 s) employing singlet oxygen (1O2) as the dominant reactive oxygen species (ROS). The characterization results demonstrated that iron was mainly intercalated into the catalyst by substituting calcium sites in swine bone biochar, and the Fe-BC composition was significantly affected by annealing temperature. A comprehensive study including quenching experiments, electron paramagnetic resonance (EPR), chemical probes, and linear sweep voltammetry (LSV) revealed that 1O2 was the dominant ROS. According to the characterization results, 1O2 was generated from the conversion of superoxide radical (O2•−) and the self-dissociation of PMS. Iron was the main active site of Fe-BC catalysts, and the carbon defects and oxygen-containing groups also played roles in catalyzing PMS. The Fe-BC/PMS system exhibited outstanding oxidative capability over a wide pH range (3.0–9.0) and was resistant to interference from some high concentrations of anions (Cl−, NO3–, and SO42−). This work provides a new perspective on using animal bone-derived biochar catalysts in advanced oxidation processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiha西希完成签到,获得积分10
刚刚
赘婿应助yunshui采纳,获得10
刚刚
Xavier发布了新的文献求助100
1秒前
3秒前
伶俐猪完成签到 ,获得积分10
3秒前
fawr完成签到 ,获得积分10
5秒前
小二郎应助Denmark采纳,获得10
5秒前
6秒前
7秒前
7秒前
8秒前
一投就中发布了新的文献求助30
9秒前
10秒前
10秒前
幽默书白完成签到,获得积分10
11秒前
奋斗的苹果完成签到,获得积分10
11秒前
个性的荆发布了新的文献求助10
12秒前
blue发布了新的文献求助10
12秒前
勤恳寒安发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
负责乐安完成签到,获得积分10
14秒前
16秒前
16秒前
你能行完成签到,获得积分10
16秒前
16秒前
Denmark发布了新的文献求助10
17秒前
17秒前
狄百招完成签到,获得积分0
17秒前
许多年以后完成签到,获得积分10
17秒前
春风发布了新的文献求助10
18秒前
fuchao完成签到,获得积分20
18秒前
刘志超发布了新的文献求助10
19秒前
火星上誉完成签到 ,获得积分10
19秒前
科研辣鸡发布了新的文献求助10
19秒前
dmxhh完成签到 ,获得积分10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790