Code-line-level Bugginess Identification: How Far have We Come, and How Far have We Yet to Go?

计算机科学 杠杆(统计) 源代码行 编码(集合论) 实施 机器学习 鉴定(生物学) 人工智能 启发式 基线(sea) 源代码 边距(机器学习) 程序设计语言 软件 海洋学 植物 集合(抽象数据类型) 生物 地质学
作者
Zhaoqiang Guo,Shiran Liu,Xutong Liu,Wei Lai,Mingliang Ma,Xu Zhang,Chao Ni,Yibiao Yang,Yanhui Li,Lin Chen,Guoqiang Zhou,Yuming Zhou
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
卷期号:32 (4): 1-55 被引量:8
标识
DOI:10.1145/3582572
摘要

Background. Code-line-level bugginess identification (CLBI) is a vital technique that can facilitate developers to identify buggy lines without expending a large amount of human effort. Most of the existing studies tried to mine the characteristics of source codes to train supervised prediction models, which have been reported to be able to discriminate buggy code lines amongst others in a target program. Problem. However, several simple and clear code characteristics, such as complexity of code lines, have been disregarded in the current literature. Such characteristics can be acquired and applied easily in an unsupervised way to conduct more accurate CLBI, which also can decrease the application cost of existing CLBI approaches by a large margin. Objective. We aim at investigating the status quo in the field of CLBI from the perspective of (1) how far we have really come in the literature, and (2) how far we have yet to go in the industry, by analyzing the performance of state-of-the-art (SOTA) CLBI approaches and tools, respectively. Method. We propose a simple heuristic baseline solution GLANCE (aimin G at contro L - AN d C ompl E x-statements) with three implementations (i.e., GLANCE-MD, GLANCE-EA, and GLANCE-LR). GLANCE is a two-stage CLBI framework: first, use a simple model to predict the potentially defective files; second, leverage simple code characteristics to identify buggy code lines in the predicted defective files. We use GLANCE as the baseline to investigate the effectiveness of the SOTA CLBI approaches, including natural language processing (NLP) based, model interpretation techniques (MIT) based, and popular static analysis tools (SAT). Result. Based on 19 open-source projects with 142 different releases, the experimental results show that GLANCE framework has a prediction performance comparable or even superior to the existing SOTA CLBI approaches and tools in terms of 8 different performance indicators. Conclusion. The results caution us that, if the identification performance is the goal, the real progress in CLBI is not being achieved as it might have been envisaged in the literature and there is still a long way to go to really promote the effectiveness of static analysis tools in industry. In addition, we suggest using GLANCE as a baseline in future studies to demonstrate the usefulness of any newly proposed CLBI approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zhangjin2969发布了新的文献求助10
刚刚
愤怒的小鸽子完成签到,获得积分10
刚刚
张楚岚发布了新的文献求助10
刚刚
1秒前
高唐发布了新的文献求助10
1秒前
2秒前
2秒前
Hello应助yaoyao采纳,获得10
3秒前
会撒娇的靖仇完成签到,获得积分20
3秒前
CipherSage应助echo采纳,获得10
4秒前
4秒前
wr完成签到 ,获得积分10
4秒前
赶紧毕业完成签到,获得积分10
5秒前
yao发布了新的文献求助10
6秒前
6秒前
研友_VZG7GZ应助崔双艳采纳,获得10
6秒前
安之若素发布了新的文献求助20
6秒前
快乐大炮完成签到,获得积分10
7秒前
浮游应助小白采纳,获得10
7秒前
8秒前
9秒前
xiaobai应助Auoroa采纳,获得10
9秒前
9秒前
搜集达人应助含糊的夜绿采纳,获得10
10秒前
10秒前
乌卡卡发布了新的文献求助10
11秒前
11秒前
Guofa.完成签到 ,获得积分10
12秒前
12秒前
田様应助甜甜耶耶采纳,获得10
12秒前
科研小白发布了新的文献求助10
13秒前
13秒前
xinyuxxx发布了新的文献求助10
14秒前
小余同学完成签到,获得积分10
14秒前
爆米花应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442393
求助须知:如何正确求助?哪些是违规求助? 4552598
关于积分的说明 14237646
捐赠科研通 4473916
什么是DOI,文献DOI怎么找? 2451715
邀请新用户注册赠送积分活动 1442571
关于科研通互助平台的介绍 1418541