Code-line-level Bugginess Identification: How Far have We Come, and How Far have We Yet to Go?

计算机科学 杠杆(统计) 源代码行 编码(集合论) 实施 机器学习 鉴定(生物学) 人工智能 启发式 基线(sea) 源代码 边距(机器学习) 程序设计语言 软件 海洋学 植物 集合(抽象数据类型) 生物 地质学
作者
Zhaoqiang Guo,Shiran Liu,Xutong Liu,Wei Lai,Mingliang Ma,Xu Zhang,Chao Ni,Yibiao Yang,Yanhui Li,Lin Chen,Guoqiang Zhou,Yuming Zhou
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
卷期号:32 (4): 1-55 被引量:8
标识
DOI:10.1145/3582572
摘要

Background. Code-line-level bugginess identification (CLBI) is a vital technique that can facilitate developers to identify buggy lines without expending a large amount of human effort. Most of the existing studies tried to mine the characteristics of source codes to train supervised prediction models, which have been reported to be able to discriminate buggy code lines amongst others in a target program. Problem. However, several simple and clear code characteristics, such as complexity of code lines, have been disregarded in the current literature. Such characteristics can be acquired and applied easily in an unsupervised way to conduct more accurate CLBI, which also can decrease the application cost of existing CLBI approaches by a large margin. Objective. We aim at investigating the status quo in the field of CLBI from the perspective of (1) how far we have really come in the literature, and (2) how far we have yet to go in the industry, by analyzing the performance of state-of-the-art (SOTA) CLBI approaches and tools, respectively. Method. We propose a simple heuristic baseline solution GLANCE (aimin G at contro L - AN d C ompl E x-statements) with three implementations (i.e., GLANCE-MD, GLANCE-EA, and GLANCE-LR). GLANCE is a two-stage CLBI framework: first, use a simple model to predict the potentially defective files; second, leverage simple code characteristics to identify buggy code lines in the predicted defective files. We use GLANCE as the baseline to investigate the effectiveness of the SOTA CLBI approaches, including natural language processing (NLP) based, model interpretation techniques (MIT) based, and popular static analysis tools (SAT). Result. Based on 19 open-source projects with 142 different releases, the experimental results show that GLANCE framework has a prediction performance comparable or even superior to the existing SOTA CLBI approaches and tools in terms of 8 different performance indicators. Conclusion. The results caution us that, if the identification performance is the goal, the real progress in CLBI is not being achieved as it might have been envisaged in the literature and there is still a long way to go to really promote the effectiveness of static analysis tools in industry. In addition, we suggest using GLANCE as a baseline in future studies to demonstrate the usefulness of any newly proposed CLBI approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小新XIAO完成签到,获得积分10
2秒前
shhoing应助persist采纳,获得10
2秒前
韩嘉琦发布了新的文献求助10
2秒前
jimmyhui完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助科研小白采纳,获得10
3秒前
dddd发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
清爽的听云完成签到,获得积分10
7秒前
整齐听南完成签到,获得积分10
7秒前
ygh完成签到,获得积分10
8秒前
8秒前
一个饼完成签到,获得积分20
8秒前
打打应助Jie采纳,获得10
8秒前
Zhangzinan发布了新的文献求助10
9秒前
跳跃巨人发布了新的文献求助10
9秒前
qiuyue发布了新的文献求助10
9秒前
泠清完成签到 ,获得积分10
9秒前
9秒前
秦婉琦发布了新的文献求助30
9秒前
香蕉觅云应助宁琳采纳,获得10
9秒前
科研顺利完成签到,获得积分10
10秒前
呵呵哒完成签到,获得积分10
11秒前
文献狗完成签到,获得积分10
11秒前
虚心求学发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
加百莉发布了新的文献求助10
13秒前
CipherSage应助乐观的颦采纳,获得10
13秒前
呵呵哒发布了新的文献求助10
13秒前
14秒前
lili发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075