Code-line-level Bugginess Identification: How Far have We Come, and How Far have We Yet to Go?

计算机科学 杠杆(统计) 源代码行 编码(集合论) 实施 机器学习 鉴定(生物学) 人工智能 启发式 基线(sea) 源代码 边距(机器学习) 程序设计语言 软件 地质学 海洋学 生物 植物 集合(抽象数据类型)
作者
Zhaoqiang Guo,Shiran Liu,Xutong Liu,Lai Wei,Mingliang Ma,Xu Zhang,Chao Ni,Yibiao Yang,Yanhui Li,Lin Chen,Zhou Guo-qiang,Yuming Zhou
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
卷期号:32 (4): 1-55 被引量:5
标识
DOI:10.1145/3582572
摘要

Background. Code-line-level bugginess identification (CLBI) is a vital technique that can facilitate developers to identify buggy lines without expending a large amount of human effort. Most of the existing studies tried to mine the characteristics of source codes to train supervised prediction models, which have been reported to be able to discriminate buggy code lines amongst others in a target program. Problem. However, several simple and clear code characteristics, such as complexity of code lines, have been disregarded in the current literature. Such characteristics can be acquired and applied easily in an unsupervised way to conduct more accurate CLBI, which also can decrease the application cost of existing CLBI approaches by a large margin. Objective. We aim at investigating the status quo in the field of CLBI from the perspective of (1) how far we have really come in the literature, and (2) how far we have yet to go in the industry, by analyzing the performance of state-of-the-art (SOTA) CLBI approaches and tools, respectively. Method. We propose a simple heuristic baseline solution GLANCE (aimin G at contro L - AN d C ompl E x-statements) with three implementations (i.e., GLANCE-MD, GLANCE-EA, and GLANCE-LR). GLANCE is a two-stage CLBI framework: first, use a simple model to predict the potentially defective files; second, leverage simple code characteristics to identify buggy code lines in the predicted defective files. We use GLANCE as the baseline to investigate the effectiveness of the SOTA CLBI approaches, including natural language processing (NLP) based, model interpretation techniques (MIT) based, and popular static analysis tools (SAT). Result. Based on 19 open-source projects with 142 different releases, the experimental results show that GLANCE framework has a prediction performance comparable or even superior to the existing SOTA CLBI approaches and tools in terms of 8 different performance indicators. Conclusion. The results caution us that, if the identification performance is the goal, the real progress in CLBI is not being achieved as it might have been envisaged in the literature and there is still a long way to go to really promote the effectiveness of static analysis tools in industry. In addition, we suggest using GLANCE as a baseline in future studies to demonstrate the usefulness of any newly proposed CLBI approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sunidea发布了新的文献求助10
2秒前
Pursue完成签到,获得积分10
3秒前
heartworm完成签到 ,获得积分10
4秒前
4秒前
yab完成签到 ,获得积分10
10秒前
莫妮卡.宾完成签到 ,获得积分10
10秒前
12秒前
GRG完成签到 ,获得积分10
15秒前
young关注了科研通微信公众号
15秒前
GGbong发布了新的文献求助10
17秒前
lzl完成签到,获得积分10
17秒前
若冰发布了新的文献求助30
18秒前
ZhJF完成签到 ,获得积分10
19秒前
21秒前
小蘑菇应助快乐的呼呼采纳,获得10
23秒前
可乐发布了新的文献求助10
28秒前
哈哈哈完成签到,获得积分10
30秒前
30秒前
在水一方应助sunidea采纳,获得10
32秒前
共享精神应助激动的士萧采纳,获得10
34秒前
34秒前
Lucas应助冲冲冲冲冲冲采纳,获得10
34秒前
向雅发布了新的文献求助30
35秒前
37秒前
红红的红红发布了新的文献求助200
37秒前
young发布了新的文献求助20
38秒前
maomao发布了新的文献求助10
38秒前
STAR_To完成签到,获得积分10
38秒前
air-yi完成签到,获得积分10
38秒前
39秒前
不配.应助满穗采纳,获得20
41秒前
酷波er应助Ijaz采纳,获得10
41秒前
代骜珺发布了新的文献求助10
42秒前
42秒前
snail完成签到,获得积分10
42秒前
李健应助小龙女采纳,获得10
43秒前
不配.应助123采纳,获得10
43秒前
43秒前
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136127
求助须知:如何正确求助?哪些是违规求助? 2787029
关于积分的说明 7780244
捐赠科研通 2443154
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870