Improved Image Compressive Sensing Recovery with Low-Rank Prior and Deep Image Prior

秩(图论) 压缩传感 图像(数学) 规范(哲学) 计算机科学 迭代函数 人工智能 模块化设计 算法 数学 数学优化 政治学 操作系统 组合数学 数学分析 法学
作者
Yifan Wu,Jian‐Qiao Sun,Wengu Chen,Youlun Ju
出处
期刊:Signal Processing [Elsevier BV]
卷期号:205: 108896-108896 被引量:7
标识
DOI:10.1016/j.sigpro.2022.108896
摘要

Compressive sensing (CS) aims to recover images with rich and accurate information from a small amount of sampled data. Due to its ill-posedness, the model-based CS method has been widely used ever. In recent years, with the development of the arisen learning-based method, enormous progress has been made in combining learning-based strategy with traditional methods. However, at a low sampling ratio, most such methods tend to over-suppress image information, making the recovered results less satisfactory. In order to push the limits of image CS recovery, we propose a novel non-convex low-rank(NCLR) prior by utilizing weighted Schatten p-norm as a surrogate function of the rank function in low-rank approximation. We then provide a new NCLR-based CS model for image CS recovery by plugging the deep prior as a modular part. In addition, we present an efficient iterated algorithm to solve the proposed model by using the alternating direction method of multiplier (ADMM). Further, the convergence of the proposed method is also illustrated. Extensive experimental results demonstrate that our method achieves good performance in both quantity evaluation and visual perception compared to the existing image CS recovery methods, especially at a low sampling ratio.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专一的小海豚完成签到,获得积分10
1秒前
amy完成签到,获得积分10
1秒前
机智的研究者完成签到,获得积分10
3秒前
3秒前
依然完成签到,获得积分10
3秒前
4秒前
典雅的酬海完成签到,获得积分10
4秒前
5秒前
HJJ完成签到,获得积分10
5秒前
李小狼不浪完成签到,获得积分10
5秒前
5秒前
Jam发布了新的文献求助10
8秒前
YQQ发布了新的文献求助10
9秒前
FashionBoy应助红烛暖月色采纳,获得10
9秒前
10秒前
彗星入梦发布了新的文献求助10
11秒前
12秒前
饱满冷卉发布了新的文献求助20
13秒前
14秒前
17秒前
17秒前
淡淡从阳完成签到,获得积分10
18秒前
情怀应助谷雨秋采纳,获得10
18秒前
zzzzzzx发布了新的文献求助10
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
22秒前
maclogos发布了新的文献求助10
22秒前
22秒前
田様应助qdd采纳,获得10
23秒前
蓝羽发布了新的文献求助10
24秒前
陶醉山灵发布了新的文献求助10
25秒前
25秒前
灼灼朗朗完成签到,获得积分10
26秒前
26秒前
hahahalha完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952910
求助须知:如何正确求助?哪些是违规求助? 3498351
关于积分的说明 11091687
捐赠科研通 3229027
什么是DOI,文献DOI怎么找? 1785170
邀请新用户注册赠送积分活动 869214
科研通“疑难数据库(出版商)”最低求助积分说明 801377